Physical Chemistry Week 12

Slides:



Advertisements
Similar presentations
The Quantum Mechanics of Simple Systems
Advertisements

Lecture 11 Particle on a ring (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed and.
18_12afig_PChem.jpg Rotational Motion Center of Mass Translational Motion r1r1 r2r2 Motion of Two Bodies Each type of motion is best represented in its.
1 Cold molecules Mike Tarbutt. 2 Outline Lecture 1 – The electronic, vibrational and rotational structure of molecules. Lecture 2 – Transitions in molecules.
3D Schrodinger Equation
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
r2 r1 r Motion of Two Bodies w k Rc
Classical Model of Rigid Rotor
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
P D S.E. II1 3D Schr. Eqn.:Radial Eqn. For V funtion of radius only. Look at radial equation often rewritten as note l(l+1) term. Angular momentum.
Modifying the Schrödinger Equation
Quantum mechanics review. Reading for week of 1/28-2/1 – Chapters 1, 2, and 3.1,3.2 Reading for week of 2/4-2/8 – Chapter 4.
Lecture 17 Hydrogenic atom (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed and made.
Angular Momentum. What was Angular Momentum Again? If a particle is confined to going around a sphere: At any instant the particle is on a particular.
The Hydrogen Atom continued.. Quantum Physics 2002 Recommended Reading: Harris Chapter 6, Sections 3,4 Spherical coordinate system The Coulomb Potential.
The motion of the classical and quntum partcles in the extended Lobachevsky space Yu. Kurochkin, V.S. Otchik, E. Ovseyuk, Dz. Shoukovy.
Ch 9 pages Lecture 23 – The Hydrogen Atom.
P D S.E.1 3D Schrodinger Equation Simply substitute momentum operator do particle in box and H atom added dimensions give more quantum numbers. Can.
6.852: Distributed Algorithms Spring, 2008 April 1, 2008 Class 14 – Part 2 Applications of Distributed Algorithms to Diverse Fields.
Examples and Exercises. Normalizing a Wavefunction Find a normalizing factor of the hydrogen’s electron wavefunction Function of r, using spherical coordinate.
(1) Experimental evidence shows the particles of microscopic systems moves according to the laws of wave motion, and not according to the Newton laws of.
Quantum mechanics unit 2
MS310 Quantum Physical Chemistry
MS310 Quantum Physical Chemistry
Hydrogen Atom PHY Outline  review of L z operator, eigenfunction, eigenvalues rotational kinetic energy traveling and standing waves.
Nanoelectronics Chapter 3 Quantum Mechanics of Electrons
Nanoelectronics Chapter 4 Free and Confined Electrons
CHAPTER 7 The Hydrogen Atom
Review for Exam 2 The Schrodinger Eqn.
Relativistic Quantum Mechanics
Harmonic Oscillator and Rigid Rotator
The Quantum Mechanical Model of the Atom
Quantum Theory of Hydrogen Atom
Schrodinger’s Equation for Three Dimensions
One Dimensional Quantum Mechanics: The Free Particle
The Hydrogen Atom The only atom that can be solved exactly.
Schrodinger wave equation
UNIT 1 Quantum Mechanics.
Quantum Mechanics of Angular Momentum
PHYS274 Atomic Structure I
3D Schrodinger Equation
Quantum One.
Chapter 7 Atomic Physics.
Hydrogen Atom PHY
Quantum One.
Elements of Quantum Mechanics
Quantum One.
Electron Clouds and Probability
Central Potential Another important problem in quantum mechanics is the central potential problem This means V = V(r) only This means angular momentum.
QM2 Concept Test 2.1 Which one of the following pictures represents the surface of constant
Electron Clouds and Probability
Quantum Two.
The Quantum Model of the Atom
Coordinate /re.
Physical Chemistry Week 5 & 6
Ψ
Total Angular Momentum
Quantum Theory of Hydrogen Atom
Quantum Two Body Problem, Hydrogen Atom
The Stale of a System Is Completely Specified by lts Wave Function
QM1 Concept test 1.1 Consider an ensemble of hydrogen atoms all in the ground state. Choose all of the following statements that are correct. If you make.
Choose all of the following observables for which it will be convenient to use the coupled representation to find the probabilities of different outcomes.
 .
The Shell Model of the Nucleus 2. The primitive model
By- Prof. R.S. Gupta GOVERNMENT (AUTONOMOUS) P.G. COLLEGE
CHAPTER 7 The Hydrogen Atom
The Quantum-Mechanical Hydrogen Atom
Quantum study of hydrogen stored under high pressure in a spherical cavity By Kamel Idris-Bey Laboratory of Physics Experimental Techniques and Applications.
The Rigid Rotor.
The Harmonic Oscillator
Presentation transcript:

Physical Chemistry Week 12

Properties of spherical harmonics Λ 2 𝑌 𝑙𝑚 =−𝑙 𝑙+1 𝑌 𝑙𝑚 Energy: 𝐻 =− ℏ 2 2𝑚 ⋅ Λ 2 𝑟 2 , 𝐻 𝑌 𝑙𝑚 = ℏ 2 2𝐼 ⋅𝑙 𝑙+1 𝑌 𝑙𝑚 , 𝐸 𝑙 = 𝑙 𝑙+1 ℏ 2 2𝐼 Square of angular momentum ( 𝐿 2 ): Classical: 𝐸= 𝐿 2 /2𝐼; quantum: 𝐿 2 =− ℏ 2 Λ 2 𝐿 2 𝑌 𝑙𝑚 =𝑙 𝑙+1 ℏ 2 𝑌 𝑙𝑚 , 𝐿 2 𝑙 =𝑙 𝑙+1 ℏ 2

Angular momentum ( 𝐿 ) Classical: 𝐿 = 𝑟 × 𝑝 ; quantum: 𝐿 = 𝑟 × 𝑝 𝑟 =𝑥 𝑒 𝑥 +𝑦 𝑒 𝑦 +𝑧 𝑒 𝑧 , 𝑝 = 𝑝 𝑥 𝑒 𝑥 + 𝑝 𝑦 𝑒 𝑦 + 𝑝 𝑧 𝑒 𝑧 𝑝 𝜇 = ℏ 𝑖 𝜕 𝜕𝜇 , 𝜇=𝑥,𝑦,𝑧 ‘×’ means cross product 𝑎 × 𝑘 𝑏 =𝑘 𝑎 × 𝑏 , 𝑎 × 𝑎 = 0 , 𝑎 × 𝑏 =− 𝑏 × 𝑎 , 𝑎 × 𝑏 + 𝑐 = 𝑎 × 𝑏 + 𝑎 × 𝑐 𝑒 𝑥 × 𝑒 𝑦 = 𝑒 𝑧 , 𝑒 𝑦 × 𝑒 𝑧 = 𝑒 𝑥 , 𝑒 𝑧 × 𝑒 𝑥 = 𝑒 𝑦

Continued 𝐿 &= 𝑥 𝑒 𝑥 +𝑦 𝑒 𝑦 +𝑧 𝑒 𝑧 × ℏ 𝑖 𝜕 𝜕𝑥 𝑒 𝑥 + 𝜕 𝜕𝑦 𝑒 𝑦 + 𝜕 𝜕𝑧 𝑒 𝑧 &= ℏ 𝑖 𝑥 𝜕 𝜕𝑦 −𝑦 𝜕 𝜕𝑥 𝑒 𝑧 + 𝑦 𝜕 𝜕𝑧 −𝑧 𝜕 𝜕𝑦 𝑒 𝑥 + 𝑧 𝜕 𝜕𝑥 −𝑥 𝜕 𝜕𝑧 𝑒 𝑦 𝐿 𝑥 = ℏ 𝑖 𝑦 𝜕 𝜕𝑧 −𝑧 𝜕 𝜕𝑦 𝐿 𝑦 = ℏ 𝑖 𝑧 𝜕 𝜕𝑥 −𝑥 𝜕 𝜕𝑧 𝐿 𝑧 = ℏ 𝑖 𝑥 𝜕 𝜕𝑦 −𝑦 𝜕 𝜕𝑥

Commutation relations 𝐿 𝑥 , 𝐿 𝑦 &=− ℏ 2 𝑦 𝜕 𝜕𝑧 −𝑧 𝜕 𝜕𝑦 𝑧 𝜕 𝜕𝑥 −𝑥 𝜕 𝜕𝑧 − 𝑧 𝜕 𝜕𝑥 −𝑥 𝜕 𝜕𝑧 𝑦 𝜕 𝜕𝑧 −𝑧 𝜕 𝜕𝑦 &=− ℏ 2 𝑦 𝜕 𝜕𝑥 +𝑦𝑧 𝜕 2 𝜕𝑧𝜕𝑥 −𝑦𝑥 𝜕 2 𝜕 𝑧 2 − 𝑧 2 𝜕 2 𝜕𝑦𝜕𝑥 +𝑧𝑥 𝜕 2 𝜕𝑦𝜕𝑧 & + ℏ 2 𝑧𝑦 𝜕 2 𝜕𝑥𝜕𝑧 − 𝑧 2 𝜕 2 𝜕𝑥𝜕𝑦 −𝑥𝑦 𝜕 2 𝜕 𝑧 2 +𝑥 𝜕 𝜕𝑦 +𝑥𝑧 𝜕 2 𝜕𝑧𝜕𝑦 &= ℏ 2 𝑥 𝜕 𝜕𝑦 −𝑦 𝜕 𝜕𝑥 &=𝑖ℏ 𝐿 𝑧 𝐿 𝑥 , 𝐿 𝑦 =𝑖ℏ 𝐿 𝑧 , 𝐿 𝑦 , 𝐿 𝑧 =𝑖ℏ 𝐿 𝑥 , 𝐿 𝑧 , 𝐿 𝑥 =𝑖ℏ 𝐿 𝑦

Continued 𝐿 2 , 𝐿 𝑧 = 𝐿 𝑥 2 , 𝐿 𝑧 + 𝐿 𝑦 2 , 𝐿 𝑧 + 𝐿 𝑧 2 , 𝐿 𝑧 𝐿 2 , 𝐿 𝑧 = 𝐿 𝑥 2 , 𝐿 𝑧 + 𝐿 𝑦 2 , 𝐿 𝑧 + 𝐿 𝑧 2 , 𝐿 𝑧 𝐿 𝑧 2 , 𝐿 𝑧 = 𝐿 𝑧 3 − 𝐿 𝑧 3 =0 • 𝐿 𝑥 2 , 𝐿 𝑧 &= 𝐿 𝑥 2 𝐿 𝑧 − 𝐿 𝑥 𝐿 𝑧 𝐿 𝑥 + 𝐿 𝑥 𝐿 𝑧 𝐿 𝑥 − 𝐿 𝑧 𝐿 𝑥 2 &= 𝐿 𝑥 𝐿 𝑥 , 𝐿 𝑧 + 𝐿 𝑥 , 𝐿 𝑧 𝐿 𝑥 &=−𝑖ℏ 𝐿 𝑥 𝐿 𝑦 + 𝐿 𝑦 𝐿 𝑥 𝐿 𝑦 2 , 𝐿 𝑧 =𝑖ℏ 𝐿 𝑦 𝐿 𝑥 + 𝐿 𝑥 𝐿 𝑦 𝐿 2 , 𝐿 𝑧 =0

Continued 𝐻 , 𝐿 𝑧 = 𝐿 2 2𝐼 , 𝐿 𝑧 =0 These commutation relations confirm that 𝑌 𝑙𝑚 are the eigenfunctions for 𝐻 , 𝐿 2 and 𝐿 𝑧 , i.e. 𝐻 𝑌 𝑙𝑚 = 𝑙 𝑙+1 ℏ 2 2𝐼 𝑌 𝑙𝑚 𝐿 2 𝑌 𝑙𝑚 =𝑙 𝑙+1 ℏ 2 𝑌 𝑙𝑚 𝐿 𝑧 𝑌 𝑙𝑚 =𝑚ℏ 𝑌 𝑙𝑚

Schrödinger equation for hydrogen atom Some notations Mass: nucleus 𝑚 𝑁 , electron 𝑚 𝑒 , total 𝑚 CM = 𝑚 𝑁 + 𝑚 𝑒 , reduced 𝜇= 𝑚 𝑒 𝑚 𝑁 𝑚 𝑒 + 𝑚 𝑁 Position vector: nucleus 𝑟 𝑁 , electron 𝑟 𝑒 , centre of mass (CM) 𝑅 = 𝑚 𝑒 𝑟 𝑒 + 𝑚 𝑁 𝑟 𝑁 𝑚 𝑒 + 𝑚 𝑁 , electron relative to nucleus 𝑟 = 𝑟 𝑒 − 𝑟 𝑁 If 𝑅 = 𝑅 𝑥 𝑒 𝑥 + 𝑅 𝑦 𝑒 𝑦 + 𝑅 𝑧 𝑒 𝑧 , ∇ 𝑅 2 = 𝜕 2 𝜕 𝑅 𝑥 2 + 𝜕 2 𝜕 𝑅 𝑦 2 + 𝜕 2 𝜕 𝑅 𝑧 2 (similar for ∇ 𝑟 2 ) Classical momentum: nucleus 𝑝 𝑁 = 𝑚 𝑁 𝑟 𝑁 , electron 𝑝 𝑒 = 𝑚 𝑒 𝑟 𝑒 , CM 𝑝 CM = 𝑚 CM 𝑅 , electron relative to nucleus 𝑝 𝜇 =𝜇 𝑟 Vector without arrow means modulus 𝑟= 𝑟 , etc O positron 𝑚 𝑁 𝑚 𝑒 electron 𝑟 𝑒 𝑟 𝑁 𝑟 = 𝑟 𝑒 − 𝑟 𝑁

Continued Classical energy: 𝐸= 𝑝 𝑒 2 2 𝑚 𝑒 + 𝑝 𝑁 2 2 𝑚 𝑁 − 𝑒 2 𝑟 = 𝑝 CM 2 2 𝑚 CM + 𝑝 𝜇 2 2𝜇 − 𝑒 2 𝑟 , CM motion and relative motion are separated Quantum Hamiltonian: 𝐻 =− ℏ 2 2 𝑚 CM ∇ 𝑅 2 − ℏ 2 2𝜇 ∇ 𝑟 2 − 𝑒 2 𝑟 S.E. − ℏ 2 2 𝑚 CM ∇ 𝑅 2 − ℏ 2 2𝜇 ∇ 𝑟 2 − 𝑒 2 𝑟 Φ 𝑟 , 𝑅 =𝐸Φ 𝑟 , 𝑅

Separation of 𝑟 and 𝑅 Let Φ 𝑟 , 𝑅 =𝜒 𝑅 𝜓 𝑟 − ℏ 2 2 𝑚 CM ∇ 𝑅 2 𝜒 𝜓− ℏ 2 2𝜇 𝜒 ∇ 𝑟 2 𝜓− 𝑒 2 𝑟 𝜒𝜓=𝐸𝜒𝜓 divide both sides by 𝜒𝜓: − ℏ 2 2 𝑚 CM ∇ 𝑅 2 𝜒 𝜒 − ℏ 2 2𝜇 ∇ 𝑟 2 𝜓 𝜓 − 𝑒 2 𝑟 =𝐸 Thus − ℏ 2 2 𝑚 CM ∇ 𝑅 2 𝜒 𝜒 = 𝐸 CM and − ℏ 2 2𝜇 ∇ 𝑟 2 𝜓 𝜓 − 𝑒 2 𝑟 = 𝐸 𝑒 where 𝐸 CM + 𝐸 𝑒 =𝐸

Equation of 𝜒 − ℏ 2 2 𝑚 CM ∇ 𝑅 2 𝜒= 𝐸 CM 𝜒 This is just a free particle moving in 3D space Plane wave solution 𝜒 𝑅 =𝐴 𝑒 𝑖 𝑘 CM ⋅ 𝑅 Wave vector: 𝑘 CM with modulus 2 𝑚 CM 𝐸 CM ℏ and along the direction of 𝜐 𝑝

Equation of 𝜓 − ℏ 2 2𝜇 ∇ 𝑟 2 𝜓− 𝑒 2 𝑟 𝜓= 𝐸 𝑒 𝜓 − ℏ 2 2𝜇 ∇ 𝑟 2 𝜓− 𝑒 2 𝑟 𝜓= 𝐸 𝑒 𝜓 ∇ 𝑟 2 can be expressed in spherical coordinate system located at nucleus ∇ 𝑟 2 = 𝜕 2 𝜕 𝑟 2 + 2 𝑟 𝜕 𝜕𝑟 + Λ 2 𝑟 2 From now on, we will omit the subscript of 𝐸 𝑒 for simplicity Let 𝜓 𝑟 =𝑅 𝑟 𝑌 𝜃,𝜙 − ℏ 2 2𝜇 𝑟 2 𝜕 2 𝑅 𝜕 𝑟 2 + 2 𝑟 𝜕𝑅 𝜕𝑟 𝑌− 𝑒 2 𝑟𝑅𝑌−𝐸 𝑟 2 𝑅𝑌− ℏ 2 2𝜇 𝑅 Λ 2 𝑌=0

Continued divide both sides by 𝑅𝑌: − ℏ 2 𝑟 2 2𝜇𝑅 𝜕 2 𝑅 𝜕 𝑟 2 + 2 𝑟 𝜕𝑅 𝜕𝑟 − 𝑒 2 𝑟−𝐸 𝑟 2 − ℏ 2 2𝜇𝑌 Λ 2 𝑌=0 Thus − ℏ 2 2𝜇𝑌 Λ 2 𝑌=𝐴 − ℏ 2 𝑟 2 2𝜇𝑅 𝜕 2 𝑅 𝜕 𝑟 2 + 2 𝑟 𝜕𝑅 𝜕𝑟 − 𝑒 2 𝑟−𝐸 𝑟 2 =−𝐴

Equation of 𝑌 Rearrange − ℏ 2 2𝜇𝑌 Λ 2 𝑌=𝐴 as Λ 2 𝑌=− 2𝜇𝐴 ℏ 2 𝑌 𝑌= 𝑌 𝑙 𝑚 𝑙 𝜃,𝜙 , − 2𝜇𝐴 ℏ 2 =−𝑙 𝑙+1 𝐴= 𝑙 𝑙+1 ℏ 2 2𝜇

Equation of 𝑅 − ℏ 2 𝑟 2 2𝜇𝑅 𝜕 2 𝑅 𝜕 𝑟 2 + 2 𝑟 𝜕𝑅 𝜕𝑟 − 𝑒 2 𝑟−𝐸 𝑟 2 =− 𝑙 𝑙+1 ℏ 2 2𝜇 i.e. − ℏ 2 2𝜇 𝜕 2 𝜕 𝑟 2 + 2 𝑟 𝜕 𝜕𝑟 + 𝑙 𝑙+1 ℏ 2 2𝜇 𝑟 2 − 𝑒 2 𝑟 𝑅=𝐸𝑅