Presentation is loading. Please wait.

Presentation is loading. Please wait.

Physical Chemistry Week 5 & 6

Similar presentations


Presentation on theme: "Physical Chemistry Week 5 & 6"β€” Presentation transcript:

1 Physical Chemistry Week 5 & 6

2 Uncertainty principle for energy and time
From time-dependent S.E. 𝑖ℏ πœ• πœ•π‘‘ πœ“= 𝐻 πœ“, we define 𝐻 =𝑖ℏ πœ• πœ•π‘‘ ∡ 𝐻 ,𝑑 πœ™= 𝐻 π‘‘πœ™ βˆ’π‘‘ 𝐻 πœ™ =π‘–β„πœ™ ∴ 𝐻 ,𝑑 =𝑖ℏ So that βˆ†πΈβ‹…βˆ†π‘‘β‰₯ℏ/2 If a quantum state has definite energy, i.e. βˆ†πΈ=0, then the life time of this state will be βˆ†π‘‘β†’βˆž In reality, energy level is broadened, and βˆ†π‘‘~ℏ/βˆ†πΈ is regarded as life time of the energy level

3 Translation motion – 1D particle-in-a-box model
One particle with mass π‘š confined in a box 0,𝐿 𝐻 =βˆ’ ℏ 2 2π‘š d 2 d π‘₯ 2 +𝑉 π‘₯ where 𝑉 π‘₯ = 0,& 0<π‘₯<𝐿 +∞,& π‘₯≀0 π‘œπ‘Ÿ π‘₯β‰₯𝐿 Within 0,𝐿 , the S.E. has solution πœ“=𝐴 𝑒 π‘–π‘˜π‘₯ +𝐡 𝑒 βˆ’π‘–π‘˜π‘₯ , π‘˜= 2π‘šπΈ /ℏ Outside 0,𝐿 , πœ“=0

4 Continued Since wave function should be continuous, we impose boundary conditions πœ“ 0 =πœ“ 𝐿 =0 πœ“ 0 =𝐴+𝐡=0→𝐴=βˆ’π΅ πœ“ 𝐿 =βˆ’π΅ 𝑒 π‘–π‘˜πΏ +𝐡 𝑒 βˆ’π‘–π‘˜πΏ =βˆ’2𝑖𝐡 sin π‘˜πΏ =0β†’π‘˜πΏ=π‘›πœ‹, 𝑛=1,2,… So that within 0,𝐿 , πœ“ π‘₯ =βˆ’2𝑖𝐡 sin π‘›πœ‹ 𝐿 π‘₯ After normalization, πœ“ 𝑛 π‘₯ = 2 𝐿 sin π‘›πœ‹ 𝐿 π‘₯ , 𝑛=1,2,… Energy 𝐸 𝑛 = ℏ 2 π‘˜ 2 2π‘š = 𝑛 2 πœ‹ 2 ℏ 2 2π‘š 𝐿 2 , 𝑛=1,2,…

5 Orthogonality For π‘›β‰ π‘š, the following integral should be zero 0 𝐿 dπ‘₯ πœ“ 𝑛 βˆ— πœ“ π‘š &= 2 𝐿 0 𝐿 dπ‘₯ sin π‘›πœ‹π‘₯ 𝐿 sin π‘šπœ‹π‘₯ 𝐿 &=βˆ’ 1 𝐿 0 𝐿 dπ‘₯ cos 𝑛+π‘š πœ‹π‘₯ 𝐿 βˆ’ cos π‘›βˆ’π‘š πœ‹π‘₯ 𝐿 &=βˆ’ 1 𝐿 𝐿 𝑛+π‘š πœ‹ β‹… sin 𝑛+π‘š πœ‹π‘₯ 𝐿 0 𝐿 βˆ’ 𝐿 π‘›βˆ’π‘š πœ‹ β‹… sin π‘›βˆ’π‘š πœ‹π‘₯ 𝐿 0 𝐿 &=0

6 Check uncertainty principle for ground state
We define uncertainty of an operator 𝐴 as βˆ†π΄&= 𝐴 βˆ’ 𝐴 2 &= 𝐴 2 βˆ’2 𝐴 𝐴 + 𝐴 2 &= 𝐴 2 βˆ’2 𝐴 𝐴 + 𝐴 2 &= 𝐴 2 βˆ’ 𝐴 2

7 Continued π‘₯ &= 2 𝐿 0 𝐿 π‘₯ sin 2 πœ‹π‘₯ 𝐿 dπ‘₯ &= 1 𝐿 0 𝐿 π‘₯ 1βˆ’ cos 2πœ‹π‘₯ 𝐿 dπ‘₯ &= 𝐿 2 βˆ’ 1 𝐿 0 𝐿 π‘₯ cos 2πœ‹π‘₯ 𝐿 dπ‘₯ &= 𝐿 2

8 Continued π‘₯ 2 &= 2 𝐿 0 𝐿 π‘₯ 2 sin 2 πœ‹π‘₯ 𝐿 dπ‘₯ &= 1 𝐿 0 𝐿 π‘₯ 2 1βˆ’ cos 2πœ‹π‘₯ 𝐿 dπ‘₯ &= 𝐿 2 3 βˆ’ 1 𝐿 0 𝐿 π‘₯ 2 cos 2πœ‹π‘₯ 𝐿 dπ‘₯ &= 𝐿 2 3 βˆ’ 𝐿 2 2 πœ‹ 2

9 Continued 𝑝 &= 2ℏ 𝑖𝐿 β‹… πœ‹ 𝐿 0 𝐿 sin πœ‹π‘₯ 𝐿 cos πœ‹π‘₯ 𝐿 dπ‘₯ &= β„πœ‹ 𝑖 𝐿 𝐿 sin 2πœ‹π‘₯ 𝐿 dπ‘₯ &=0

10 Continued 𝑝 2 &= 2 ℏ 2 𝐿 β‹… πœ‹ 2 𝐿 𝐿 sin 2 πœ‹π‘₯ 𝐿 dπ‘₯ &= πœ‹ 2 ℏ 2 𝐿 𝐿 1βˆ’ cos 2πœ‹π‘₯ 𝐿 dπ‘₯ &= πœ‹ 2 ℏ 2 𝐿 2

11 Continued βˆ†π‘₯&= 𝐿 2 3 βˆ’ 𝐿 2 2 πœ‹ 2 βˆ’ 𝐿 2 2 &= 𝐿 2πœ‹ πœ‹ 2 3 βˆ’2 βˆ†π‘&= πœ‹β„ 𝐿 So βˆ†π‘₯β‹…βˆ†π‘= ℏ 2 β‹… πœ‹ 2 3 βˆ’2 β‰ˆ1.136β‹… ℏ 2 > ℏ 2

12 Appendix Let 𝛼 π‘˜ = 0 𝐿 sin π‘˜π‘₯ dπ‘₯ = 1βˆ’ cos π‘˜πΏ π‘˜ d𝛼 π‘˜ dπ‘˜ &= 0 𝐿 π‘₯ cos π‘˜π‘₯ dπ‘₯ &= 𝐿 sin π‘˜πΏ π‘˜ + cos π‘˜πΏ βˆ’1 π‘˜ 2 So 0 𝐿 π‘₯ cos 2πœ‹π‘₯ 𝐿 dπ‘₯ = d𝛼 π‘˜ dπ‘˜ π‘˜=2πœ‹/𝐿 =0

13 Continued Let 𝛽 π‘˜ = 0 𝐿 cos π‘˜π‘₯ dπ‘₯ = sin π‘˜πΏ π‘˜ d 2 𝛽 π‘˜ dπ‘˜ 2 &=βˆ’ 0 𝐿 π‘₯ 2 cos π‘˜π‘₯ dπ‘₯ &=βˆ’ 𝐿 2 sin π‘˜πΏ π‘˜ βˆ’ 2𝐿 cos π‘˜πΏ π‘˜ sin π‘˜πΏ π‘˜ 3 So 0 𝐿 π‘₯ 2 cos 2πœ‹π‘₯ 𝐿 dπ‘₯ =βˆ’ d 2 𝛽 π‘˜ dπ‘˜ 2 π‘˜=2πœ‹/𝐿 = 𝐿 3 2 πœ‹ 2

14 Review One particle in a 1D box πœ“ 𝑛 π‘₯ = 2 𝐿 sin π‘›πœ‹π‘₯ 𝐿 𝑛=1,2,3,…
Wave Function: πœ“ 𝑛 π‘₯ = 2 𝐿 sin π‘›πœ‹π‘₯ 𝐿 𝑛=1,2,3,… n=1 Energy Levels: x=L 𝑛= 𝐸 3 = 9 πœ‹ 2 ℏ 2 2π‘š 𝐿 2 n=3 n=2 𝑛= 𝐸 2 = 2πœ‹ 2 ℏ 2 π‘š 𝐿 2 𝑛= 𝐸 1 = πœ‹ 2 ℏ 2 2π‘š 𝐿 Ground State x

15 One particle in a 2D box Hamiltonian operator:
y=L2 𝐻 =βˆ’ ℏ 2 2π‘š ( πœ• 2 πœ• π‘₯ πœ• 2 πœ• 𝑦 2 )+𝑉(π‘₯,𝑦) m 𝑉 π‘₯,𝑦 = 0,& 0<π‘₯< 𝐿 1 π‘Žπ‘›π‘‘ 0<𝑦< 𝐿 2 +∞,& π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ y=0 x=0 x=L1

16 SchrΓΆdinger Equation 𝐻 πœ“ π‘₯,𝑦 =πΈπœ“ π‘₯,𝑦 Within 0<π‘₯< 𝐿 1 and 0<𝑦< 𝐿 2 , βˆ’ ℏ 2 2π‘š πœ• 2 πœ“ π‘₯,𝑦 πœ• π‘₯ 2 + πœ• 2 πœ“ π‘₯,𝑦 πœ• 𝑦 2 =πΈπœ“ π‘₯,𝑦 Boundary conditions πœ“ 0,𝑦 =πœ“ 𝐿 1 ,𝑦 =πœ“ π‘₯,0 =πœ“ π‘₯, 𝐿 2 =0

17 Separation of variables
Let πœ“ π‘₯,𝑦 =𝑋 π‘₯ π‘Œ 𝑦 and plug this equation into S.E., we get βˆ’ ℏ 2 2π‘š d 2 𝑋 d π‘₯ 2 π‘Œ+𝑋 d 2 π‘Œ d 𝑦 2 =πΈπ‘‹π‘Œ Divide both sides by π‘‹π‘Œ βˆ’ ℏ 2 2π‘š 1 𝑋 d 2 𝑋 d π‘₯ π‘Œ d 2 π‘Œ d 𝑦 2 =𝐸

18 Continued To ensure βˆ’ ℏ 2 2π‘š 1 𝑋 d 2 𝑋 d π‘₯ π‘Œ d 2 π‘Œ d 𝑦 2 =𝐸, each term in the LHS should be some constant, viz. βˆ’ ℏ 2 2π‘š 1 𝑋 d 2 𝑋 d π‘₯ 2 = 𝐸 1 βˆ’ ℏ 2 2π‘š 1 π‘Œ d 2 π‘Œ d 𝑦 2 = 𝐸 2 And 𝐸 1 + 𝐸 2 =𝐸

19 Continued The 2D S.E. of πœ“ π‘₯,𝑦 has been decomposed into two 1D S.E. βˆ’ ℏ 2 2π‘š d 2 𝑋 d π‘₯ 2 = 𝐸 1 𝑋 βˆ’ ℏ 2 2π‘š d 2 π‘Œ d 𝑦 2 = 𝐸 2 π‘Œ With solution where 𝑛 1 , 𝑛 2 =1,2,3,… πœ“ 𝑛 1 , 𝑛 2 = 2 𝐿 1 𝐿 2 sin 𝑛 1 πœ‹π‘₯ 𝐿 1 sin 𝑛 2 πœ‹π‘¦ 𝐿 2 &, π‘€π‘–π‘‘β„Žπ‘–π‘› 2𝐷 π‘π‘œπ‘₯ 0&, π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘π‘œπ‘₯ 𝐸 𝑛 1 , 𝑛 2 = 𝑛 1 2 πœ‹ 2 ℏ 2 2π‘š 𝐿 𝑛 2 2 πœ‹ 2 ℏ 2 2π‘š 𝐿 2 2

20 Mid-term summary Schrâdinger Equation 𝐻 Ψ=𝐸Ψ
𝐻 = 𝐾 + 𝑉 Hamiltonian/Energy operator = Kinetic energy operator + potential energy operator For one-particle system: 3D 𝑇 =βˆ’ ℏ 2 2π‘š 𝛻 2 +𝑉 π‘₯,𝑦,𝑧 , where 𝛻 2 = πœ• 2 πœ• π‘₯ πœ• 2 πœ• 𝑦 πœ• 2 πœ• 𝑧 2 is a Laplacian operator; 1D 𝑇 =βˆ’ ℏ 2 2π‘š d 2 d π‘₯ 2 +𝑉 π‘₯

21 Continued Probability density - Ξ¨ π‘₯ 2
The probability to find the particle between π‘₯ and π‘₯+dπ‘₯ is Ξ¨ π‘₯ 2 dπ‘₯ The probability to find the particle in whole space should be 1 Normalization of wave function Ξ¨/ d𝜏 Ξ¨ 2 Hermitian operator d𝜏 πœ™ βˆ— Ξ© πœ“ = d𝜏 πœ“ βˆ— Ξ© πœ™ βˆ— e.g. 𝑝 = ℏ 𝑖 βˆ‡, 𝑝 π‘₯ = ℏ 𝑖 d dπ‘₯

22 Continued Eigen value and eigen function β…†πœ πœ“ 𝑖 βˆ— πœ“ 𝑗 =0 if 𝐸 𝑖 β‰  𝐸 𝑗
𝐻 πœ“ 𝑖 = 𝐸 𝑖 πœ“ 𝑖 β…†πœ πœ“ 𝑖 βˆ— πœ“ 𝑗 =0 if 𝐸 𝑖 β‰  𝐸 𝑗 Uncertainty principle π‘₯ , 𝑝 π‘₯ =𝑖ℏ, βˆ†π‘₯β‹…βˆ† 𝑝 π‘₯ β‰₯ℏ/2 βˆ†πΈβ‹…βˆ†π‘‘β‰₯ℏ/2 βˆ’ ℏ 2 2π‘š d 2 πœ“ d π‘₯ 2 +π‘‰πœ“=πΈπœ“, 𝐸>𝑉 πœ“=𝑁 𝑒 Β±π‘–π‘˜π‘₯ , π‘˜= 2π‘š πΈβˆ’π‘‰ /ℏ, 𝑁 is normalization factor


Download ppt "Physical Chemistry Week 5 & 6"

Similar presentations


Ads by Google