Lecture Objectives: Finish with Sorption cooling

Slides:



Advertisements
Similar presentations
Chapter 10 VAPOR AND COMBINED POWER CYCLES
Advertisements

Rankine Cycle Figures from Cengel and Boles, Thermodynamics, An Engineering Approach, 6th ed., McGraw Hill, 2008.
In India 65% of total power is generated by the Thermal Power Stations. Main parts of the plant are 1. CHP.
Reading: Cengel & Boles, Chapter 9
ENERGY CONVERSION ES 832a Eric Savory Lecture 12 – Large-scale plants Department of Mechanical and Material Engineering.
Vapor and Combined Power Cycles
9 CHAPTER Vapor and Combined Power Cycles.
Chapter 1 VAPOR AND COMBINED POWER CYCLES
Vapor Power Cycles Thermodynamics Professor Lee Carkner Lecture 19.
A Vapor Power Cycle Boiler T Turbine Compressor (pump) Heat exchanger
Thermal_Power_Plant_2 Prepared by: NMG
Power Generation Cycles Vapor Power Generation The Rankine Cycle
Chem. Eng. Thermodynamics (TKK-2137) 14/15 Semester 3 Instructor: Rama Oktavian Office Hr.: M.13-15, Tu , W ,
Thermodynamics II Chapter 1 VAPOR POWER CYCLES
Vapor and Combined Power Cycles (2)
Lecture Objectives: Continue with power generation Learn basics about boilers and furnaces.
Energy and the Environment Spring 2014 Instructor: Xiaodong Chu : Office Tel.: Mobile:
Lesson 8 SECOND LAW OF THERMODYNAMICS
A Vapor Power Cycle Boiler T Turbine Compressor (pump) Heat exchanger
STEAM TURBINE POWER CYCLES. The vast majority of electrical generating plants are variations of vapour power plants in which water is the working fluid.
Chapter 10 VAPOR AND COMBINED POWER CYCLES
Objectives -Discuss Final Project -
1 ChemE 260 Improvements and Non-Ideal Behavior in the Rankine Cycle May 20, 2005 Dr. William Baratuci Senior Lecturer Chemical Engineering Department.
Lecture Objectives: Finish with absorption cooling Power generation Rankine cycles Connect power generation with heating and cooling –CHP –CCHP.
Chapter 10 Vapor and Combined Power Cycles Study Guide in PowerPoint to accompany Thermodynamics: An Engineering Approach, 7th edition by Yunus.
ENGR 2213 Thermodynamics F. C. Lai School of Aerospace and Mechanical Engineering University of Oklahoma.
Branch : Electrical Group no. :. Roll no.Names 41)Shekh Azeem 42)Shiyal Jaydip 43)Shyara Khushbu 44)Mokariya Hiren 45)Sodha Bharatsingh 46)Solanki Piyush.
ENGR 2213 Thermodynamics F. C. Lai School of Aerospace and Mechanical Engineering University of Oklahoma.
Lecture Objectives: Introduce HW3 Learn about sorption chillers.
T s boiler turbine pump work in work out heat out heat in condenser superheated vapor saturated liquid & vapor compressed liquid critical point.
Superheat Rankine Cycle Example Turbine pump condenser Q out Q in W out W in boiler Consider the superheat Rankine power cycle as we analyzed before.
VAPOUR ABSORPTION REFRIGERATION SYSTEM
Gas Turbine Power Plant
Chapter 11 Refrigeration Cycles Study Guide in PowerPoint to accompany Thermodynamics: An Engineering Approach, 7th edition by Yunus A. Çengel.
Lecture 11. Real Heat Engines and refrigerators (Ch. 4)
Chapter 10 VAPOR AND COMBINED POWER CYCLES
Chapter 10 VAPOR AND COMBINED POWER CYCLES
Vapor ,Gas and Combined Power Cycles
Objectives Evaluate the performance of gas power cycles for which the working fluid remains a gas throughout the entire cycle. Analyze vapor power.
PHOTO GALLERY Study Guide in PowerPoint to accompany Thermodynamics: An Engineering Approach, 7th edition by Yunus A. Çengel and Michael A. Boles.
VARIABLE EFFECTING EFFICIENCY OF RANKINE,REHEAT,REGENERATIVE CYCLE
Lecture Objectives: Answer question related to Project 1 assignment
prepared by Laxmi institute tech. Mechanical eng. Department.
Chapter: 08 POWER CYCLES.
Simple Thermal Power Plant
TOPIC:- VAPOUR CYCLES CREATED BY:
Lecture Objectives: Continue with Sorption Cooling
RANKINE CYCLE IMPROVISATIONS BY PRABHAKARAN.T AP/MECH
Power and Refrigeration Systems
VAPOR & COMBINED POWER CYCLES
Power Plant Technology Steam and Gas Cycle Power Plant (Assignment 1)
UNIT IV- Vapour Power Cycles
Chapter 11 Refrigeration Cycles Study Guide in PowerPoint to accompany Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel.
Chapter 7 Entropy: A Measure of Disorder
Lecture Objectives: Introduce HW3 Learn about sorption chillers.
Lecture Objectives: Discuss HW2
Chapter 8 Production of Power from Heat.
9 CHAPTER Vapor and Combined Power Cycles.
Lecture Objectives: Aabsorption cooling cycles.
Objectives Discuss HW5 – Plumbing Finalize valve design
Lecture Objectives: Finish with Electric Energy Generation
Chapter 11 Refrigeration Cycles Study Guide in PowerPoint to accompany Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel.
Lecture Objectives: Start energy production systems - Sorption cooling.
THERMAL POWER PLANT. A Thermal Power Plant converts the heat energy of coal into electrical energy. Coal is burnt in a boiler which converts water into.
Cogen, Regen Combined Cycle
Lecture Objectives: Learn about Start energy production systems
Lecture Objectives: Analysis of Absorption Cooling Cycles.
10 CHAPTER Refrigeration Cycles.
Lecture Objectives: Analysis of Absorption Cooling Cycles.
Presentation transcript:

Lecture Objectives: Finish with Sorption cooling Review Electric power generation

Simple absorption system 3V 3L 3LLP

Simple absorption system Saturated vapor at p2=p3=p4 3V 6 3 5V mixing 1’ Needed thermal energy Useful cooling energy 3L 4 3LLP 5 2 Saturated liquid at p2=p3=p4 1 5L Saturated liquid at p1=p5=p6=p3_LLP

Absorption cooling with preheater System improvement #1 Rich ammonia vapor 4 5 Refrigeration and air conditioning (Ramesh et al)

Absorption cooling with preheater Saturated vapor at p1’ 1’’’V=3 Major heat source 6 1’’’ mixing isotherm 6h 1’’ Useful cooling energy 1’’’L =2 4 5 1’ Saturated liquid at p1’ 2’ , 2’’ 1 Saturated liquid at p1 Cooling tower Pumping energy COP= Q cooling / Q heating (Pump ???)

For Real energy analysis you need real h-x diagram! hfg for H2O hfg for NH3 For Real energy analysis you need real h-x diagram!

Use of precooling (system improvement #2)

Absorption cooling with precooling Saturated vapor at p1’ 1’’’V=3 Major heat source 6’ 6 6h 1’’’ mixing Saturated liquid at p1’ isotherm 1’’ Useful cooling energy (larger!) 1’’’L =2 4 1’ Saturated liquid at p1 2’ , 2’’ 4’ 5 1 Cooling tower (needs to cool more!) Pumping energy

System improvement #3 (described as Rectification) Generator with Enrichment of NH3 Different 8V 9 8L 10 8LLP 11

Heat transfer with separation into liquid and vapor (Generator) How to move point 4 to right ? =2V =2V heating m4 Q12 /m1 2L= 2L= =m2 m1 =m2 mixture Separator sub cooled liquid mixture x1 x1 Q12 m3 Q12 m3

Heat rejection with separation into liquid and vapor (Enrichment NH3 in the vapor mixture) This is our point cooling 1 4=2V Separator 6=5V Q12 /m1 cooling Q45 /m4 x8 m8 8 7 m1 =m2 5 2 sub cooled liquid mixture isotherm m3 2L Q12 x1 x8

Heat rejection with separation into liquid and vapor (Enrichment NH3 in the vapor mixture) This is our point cooling 1 4=2V Separator 6=5V Q12 /m1 cooling Q45 /m4 x8 m8 8 7 m1 =m2 5 2 sub cooled liquid mixture isotherm m3 2L Q12 x1 x8

Ammonia Vapor Enrichment Process (Rectification)

Absorption system with Enrichment (no preheater nor precooler) Saturated vapor at p2 3V 8V 3 mixing 11 8L 1’ Useful cooling energy 8LLP 10 3L 2 9 Saturated liquid at p2 1 Saturated liquid at p1

Combined heat and power (cogeneration CHP or three generation CCHP) Here, we use thermal energy for heating and/or cooling

Gas powered turbine http://www.youtube.com/watch?feature=player_embedded&v=rxps0sZ8T3Y

Combustion product gas powered turbines Limited to gas or oil as a major source of fuel Approximately 55 to 65% of the power produced by the turbine is used for compressor. Gas temperatures at the turbine inlet can be 1200ºC to 1400ºC Because of the power required to drive the compressor, energy conversion efficiency for a simple cycle gas turbine plant is ~ 30%

Combined Cycle (gas and steam) http://www.youtube.com/watch?feature=player_embedded&v=D406Liwm1Jc

Steam powered turbine

Ideal Rankine Cycle h1=hf saturated liquid Wpump (ideal)=h2-h1=vf(Phigh-Plow) vf=specific volume of saturated liquid at low pressure qin=h3-h2 heat added in boiler Usually either qin will be specified or else the high temperature and pressure (so you can find h3) qout=h4-h1 heat removed from condenser) wturbine=h3-h4 turbine work

Reheat Cycle It allows increase boiler pressure without problems of low quality at turbine exit

Regeneration Preheats steam entering boiler using a feed-water heater, improving efficiency

Further improvements

Analogy with cooling cycles