Chapter 7 Waves in the Ocean ©2003 Jones and Bartlett Publishers.

Slides:



Advertisements
Similar presentations
Ocean Movements.
Advertisements

WAVES disturbance caused by the movement of energy from a source through some medium (solid, liquid or gas). THERE ARE MANY DIFFERENT SIZES AND SHAPES.
Introduction to Oceanography Dynamic Oceanography: Waves.
Waves in the Ocean. Waves are the undulatory motion of a water surface. Parts of a wave are, Wave crest,Wave trough, Wave height (H), Wave Amplitude,
Topic 16 Waves GEOL 2503 Introduction to Oceanography.
Waves Anatomy of wave – Wave- transmission of energy through matter – Longitudinal wave- matter oscillates in same direction of energy transmission –
Waves. 2 3  Waves are created on the surface of water as the result of a generating force.  An additional force, called the restoring force, acts to.
Wave Action Section 13.1.
WAVES.
Waves.
Chapter 21 Section 2.
Waves in the Ocean Words from these PPT slides are already on the course web site. Waves in the Ocean Words from these PPT slides are already on the course.
Waves. 2 3 Waves are created on the surface of water as the result of a generating force. An additional force, called the restoring force, acts to return.
Ocean Waves Text Book Page #
Waves and Tides. Wave Characteristics Most ocean waves are energy passing through water caused by the wind Crests are the top of the waves Troughs are.
Chapter 10 Waves Capillary Waves, Wind Waves, Tsunamis, Internal waves
WAVES disturbance caused by the movement of energy from a source through some medium (solid, liquid or gas).
Chapter 10 Ocean Waves Part 1 ftp://ucsbuxa.ucsb.edu/opl/tommy/Geog3awinter2011/
OCEAN WAVES. OBJECTIVES Identify the generating force of different waves Describe the factors that influence wind wave development Describe the basic.
How are waves formed and what are the characteristics of waves?
Chapter 8 Waves and Water Dynamics
Waves Caused by wind, tides, and earthquakes STORMSSWELL SURF (energy in) (energy out) Waves move away from the sea that generated them; this energy can.
The interface between air and sea is almost always in motion…
Wave Action.
Waves and Water Dynamics
Waves n Characteristics of All Wind-generated Waves n Deep Water Waves n Shallow Water Waves n Other Water Waves.
By: Michael Scott. Waves Are usually associated with the constant gravitational pull of the moon and the sun. In this section, we will learn what waves.
Chapter 10 Waves.
Wave Action.
Waves Wave Spectrum Surface waves deep-water waves shallow-water waves Wave Development Wave Equations Global Wave Heights S.
Types of Ocean waves. Capillary wave capillary wave, small, free, surface-water wave with such a short wavelength that its restoring force is the water’s.
What Causes Waves? ¥ Wind ¥ Submarine disturbance ¥ Gravitational attraction of sun and moon.
Waves and things. Homework Due Tuesday Read Pages Answer in complete sentences What causes the Coriolis effect? How does the Coriolis effect wind.
WAVE PROCESSES ON A COAST HOW WAVES ARE FORMED Ocean surface waves are occur on the free surface of the ocean. They usually result from wind, and are also.
Goes with Activity: Measuring Ocean Waves
WAVES. Understanding wave physics is important for human life (and not just for surfing) 1. A wave is the transmission of energy through matter – in this.
Waves in the Ocean. Waves are the undulatory motion of a water surface. Parts of a wave are, Wave crest,Wave trough, Wave height (H), Wave Amplitude,
Ocean Waves Capillary Gravity Wind generated Tides Tsunamis Seiches.
Ocean Waves Chapter 10 Oceanography.
Water and Weather. Water and Weather Chapter Seven: Oceans 7.1 Introduction to Oceans 7.2 Waves 7.3 Shallow Marine Environments 7.4 The Ocean Floor.
Chapter 7 Waves in the Ocean.
Waves. Wave are a mechanism for the transfer of energy. – The larger the wave the more energy being moved – To double a wave height requires about 4x.
Waves Chapter 9.
The Waves An Introduction to the World’s Oceans Sverdrup et al. - Chapter Ten - 8th Ed.
Waves. Waves Transport energy over a body of waterTransport energy over a body of water.
The formation of Waves Ocean waves are created by wind passing over the water Wind, and therefore waves, are derived from solar energy, whereas tides are.
© 2014 Pearson Education, Inc. W Waves and Water Dynamics Chapter 8.
Waves Transmit energy (not mass) across the ocean’s surface
WAVES.
Key Ideas Describe the formation of waves and the factors that affect wave size. Explain how waves interact with the coastline. Identify the cause of destructive.
Waves Transmit energy (not mass) across the ocean’s surface
Waves.
Lab 5 WAVES. What is waves ? how do waves form? Wave is a movement of upper surface of water due to transfer of energy from the wind into the water without.
Wave Parameters (Figure 7-1a)
Unit 7 Topic 5 Waves and Wave Depths
Wave Action Section 13.1.
Waves.
Wave Parameters (Figure 7-1a)
Waves and Tides Notes.
Ocean Waves Text Book Page #
Fur Fun: Riding Giants
Waves in the Ocean.
Waves in the Sea An ocean wave is a rhythmic rise and fall of the water’s surface. Most commonly produced by wind. Also by undersea earthquakes and the.
Lets Review! Handout 10 Waves
Wave Dynamics And Wind Waves
Tides Tides are long waves that move through the oceans in response to the forces exerted by the moon and sun. Tides originate near the middles of oceans.
Waves Transmit __________ (not __________) across the ocean’s surface
Oceanography.
WAVES The motion of the ocean
Presentation transcript:

Chapter 7 Waves in the Ocean ©2003 Jones and Bartlett Publishers

Definition: Waves are the undulatory motion of a water surface. Two general wave categories: –Progressive waves Surface waves Internal waves Tsunamis –Standing waves Seiches 7-1Properties of Ocean Waves

Characteristics of progressive waves: Parts of a wave are: –wave crest –wave trough Wave parameters: –wave height (H) –wave amplitude (1/2H) –wave length (L) –wave period (T). Wave period provides a basis for classifying waves as capillary waves, chop, swell, seiches, tsunamis, and. 7-1Properties of Ocean Waves

Idealized Wave Spectrum

(m)

Most of the waves present on the oceans surface are wind-generated waves. Size and type of wind-generated waves are controlled by: –wind velocity –wind duration –Fetch –original state of the sea surface. As wind velocity increases wavelength, period and height increase, but only if wind duration and fetch are sufficient. 7-1Properties of Ocean Waves

A fully developed sea is a sea state where the waves generated by the wind are as large as they can be under current conditions of wind velocity and fetch. Significant wave height is the average of the highest 1/3 of the waves present. –Good indicator of potential for wave damage to ships and for erosion of shorelines. 7-1Properties of Ocean Waves

Progressive waves are waves that move forward across a surface. As waves pass, wave form and wave energy move forward, but not the water. Water molecules move in an orbital motion as the wave passes. Diameter of orbit increases with increasing wave size and decreases with depth below the water surface. 7-2Wave Motions

7-2Wave Motions

Orbit Diameter and Stokes Drift

Wave base is the depth to which a surface wave can move water. If the water is deeper than wave base: –orbits are circular –no interaction between the bottom and the wave. If the water is shallower than wave base –orbits are elliptical –orbits become increasingly flattened towards the bottom. 7-2Wave Motions

Deep- and Shallow-Water Motion

There are three types of waves defined by water depth –Deep-water wave (d>or=1/2 of L) –Intermediate-water wave (d>1/20 and <1/2 of L) –Shallow-water wave (d<or= 1/20 of L) Celerity is the velocity of the wave form and not of the water. –Celerity equations. 7-2Wave Motions

Fetch is the area of contact between the wind and the water and is where wind- generated waves begin. Seas is the term applied to the sea state of the fetch when there is a chaotic jumble of new waves. Waves continue to grow until the sea is fully developed or becomes limited by fetch restriction or wind duration. 7-3Life History of Ocean Waves

Wave interference is the momentary interaction between waves as they pass through each other. Wave interference can be constructive or destructive.

Chaotic Sea exhibiting complex surface wave forms.

7-3Life History of Ocean Waves Dispersion: Gradual separation of wave types based on their relative wavelengths and speeds Because celerity increases as wavelength increases: -long waves travel faster than short waves. -This causes dispersion outside of the fetch and regular ocean swell.

7-3Life History of Ocean Waves

7-3Life History of Ocean Waves Swells: wave type found outside the fetch. Chaotic seas inside fetch area.

7-3Life History of Ocean Waves A Rogue wave occurs when there is a momentary appearance of an unusually large wave formed by constructive interference of many smaller waves.

7-3Life History of Ocean Waves

7-3Life History of Ocean Waves

The shallower the water, the greater the interaction between the wave and the bottom alters the wave properties, eventually causing the wave to collapse. Wave speed decreases as depth decreases. Wavelength decreases as depth decreases. Wave height increases as depth decreases. Troughs become flattened and the wave profile becomes extremely asymmetrical. Period remains unchanged. Period is a fundamental property of a wave. Celerity equation of shallow water wave. 7-3Life History of Ocean Waves

Wave refraction is the bending of a wave crest into an area where it travels more slowly.

Wave steepness is a ratio of wave height divided by wavelength (H/L). In shallow water, wave height increases and wave length decreases. When H/L is larger than or equals 1/7 (H/L 1/7), the wave becomes unstable and breaks. There are three types of breakers: spilling breakers, plunging breakers, and surging breakers. 7-3Life History of Ocean Waves

Spilling, Plunging and Surging Breakers Spilling breaker: Top of wave crest spills over wave. Energy released gradually across entire surf zone. Plunging breaker: Crest curls over front of wave. Energy dissipates quickly. Common at shorelines with steep slopes Surging breaker: Never breaks as it never attains critical wave steepness. Common along upwardly sloping beach faces or seawalls. Energy released seaward.

Storm surge is the rise in sea level resulting from low atmospheric pressure and the accumulation of water driven shoreward by storm winds. Water is deeper at the shore area, allowing waves to progress farther inland. Storm surge is especially severe when superimposed upon a spring high tide. 7-3Life History of Ocean Waves

Storm surge damage

Standing waves or seiches consist of a water surface seesawing back and forth. Node : The line about which the surface oscillates. –Located in centers of enclosed basins and toward the seaward side of open basins. Antinodes: Points where there are the maximum displacement of the surface as it oscillates. –Antinodes usually located at the edge of the basin. 7-4Standing Waves

Natural Period of Standing Waves

Geometry of the basin controls the period of the standing wave. A basin can be closed or open. Standing waves can be generated by storm surges. Resonance amplifies the displacement at the nodes and occurs when the period of the basin is similar to the period of the force producing the standing wave. 7-4Standing Waves

Internal waves form within the water column along the pycnocline. Because of the small density difference between the water masses above and below the pycnocline, wave properties are different compared to surface waves. Internal waves display all the properties of surface progressive waves including reflection, refraction, interference, breaking, etc. Any disturbance to the pycnocline can generate internal waves, including: flow of water related to the tides, flow of water masses past each other, storms, or submarine landslides. 7-5 Other Types of Progressive Waves

Internal waves form within the water column along the pycnocline. 7-5 Other Types of Progressive Waves

Tsunamis were previously called tidal waves, but are unrelated to tides. Tsunamis consist of a series of long-period waves characterized by very long wavelength (up to 100 km) and high speed (up to 760 km/hr) in the deep ocean. Because of their large wavelength, tsunamis are shallow-water to intermediate-water waves as they travel across the ocean basin. They only become a danger when reaching coastal areas where wave height can reach 10 m. Tsunamis originate from earthquakes, volcanic explosions, or submarine landslides. 7-5 Other Types of Progressive Waves

Generation of a Tsunami

Tsunami damage