MKFM6: multivariate stationary state-space time-series

Slides:



Advertisements
Similar presentations
Econometric Modeling Through EViews and EXCEL
Advertisements

Need to check (e.g., cov) and pretty-up: The LISREL software may be obtained at Other software packages include Eqs (
1 Regression as Moment Structure. 2 Regression Equation Y =  X + v Observable Variables Y z = X Moment matrix  YY  YX  =  YX  XX Moment structure.
A. The Basic Principle We consider the multivariate extension of multiple linear regression – modeling the relationship between m responses Y 1,…,Y m and.
Structural Equation Modeling Mgmt 290 Lecture 6 – LISREL Nov 2, 2009.
1 General Structural Equation (LISREL) Models Week #2 Class #2.
Use of Kalman filters in time and frequency analysis John Davis 1st May 2011.
1 アンサンブルカルマンフィルターによ る大気海洋結合モデルへのデータ同化 On-line estimation of observation error covariance for ensemble-based filters Genta Ueno The Institute of Statistical.
Slide B.1 LISREL MathematicalMarketing Appendix B: The LISREL Software In this section we will cover how to run LISREL, software designed to run the covariance.
Growth Curve Model Using SEM
Latent Growth Curve Modeling In Mplus:
Structural Equation Modeling
1 ASSUMPTIONS FOR MODEL C: REGRESSIONS WITH TIME SERIES DATA Assumptions C.1, C.3, C.4, C.5, and C.8, and the consequences of their violations are the.
GRA 6020 Multivariate Statistics The regression model OLS Regression Ulf H. Olsson Professor of Statistics.
The General LISREL MODEL and Non-normality Ulf H. Olsson Professor of Statistics.
Temporal Causal Modeling with Graphical Granger Methods
Simulation Modeling and Analysis Session 12 Comparing Alternative System Designs.
ARIMA Forecasting Lecture 7 and 8 - March 14-16, 2011
CHAPTER 4: Parametric Methods. Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 2 Parametric Estimation X = {
Linear and generalised linear models
14 Vector Autoregressions, Unit Roots, and Cointegration.
Structural Equation Modeling Intro to SEM Psy 524 Ainsworth.
Mixture Modeling Chongming Yang Research Support Center FHSS College.
Introduction to Multilevel Modeling Using SPSS
Moderation in Structural Equation Modeling: Specification, Estimation, and Interpretation Using Quadratic Structural Equations Jeffrey R. Edwards University.
Stats for Engineers Lecture 9. Summary From Last Time Confidence Intervals for the mean t-tables Q Student t-distribution.
Bayesian networks Classification, segmentation, time series prediction and more. Website: Twitter:
Measurement Bias Detection Through Factor Analysis Barendse, M. T., Oort, F. J. Werner, C. S., Ligtvoet, R., Schermelleh-Engel, K.
Intro. ANN & Fuzzy Systems Lecture 26 Modeling (1): Time Series Prediction.
ECE 8443 – Pattern Recognition ECE 8423 – Adaptive Signal Processing Objectives: Definitions Random Signal Analysis (Review) Discrete Random Signals Random.
Latent Growth Modeling Byrne Chapter 11. Latent Growth Modeling Measuring change over repeated time measurements – Gives you more information than a repeated.
G Lecture 81 Comparing Measurement Models across Groups Reducing Bias with Hybrid Models Setting the Scale of Latent Variables Thinking about Hybrid.
3.Analysis of asset price dynamics 3.1Introduction Price – continuous function yet sampled discretely (usually - equal spacing). Stochastic process – has.
Simulation Study for Longitudinal Data with Nonignorable Missing Data Rong Liu, PhD Candidate Dr. Ramakrishnan, Advisor Department of Biostatistics Virginia.
Linear Filters. denote a bivariate time series with zero mean. Let.
Machine Learning 5. Parametric Methods.
Mx modeling of methylation data: twin correlations [means, SD, correlation] ACE / ADE latent factor model regression [sex and age] genetic association.
Module 4 Forecasting Multiple Variables from their own Histories EC 827.
ESTIMATION METHODS We know how to calculate confidence intervals for estimates of  and  2 Now, we need procedures to calculate  and  2, themselves.
G Lecture 71 Revisiting Hierarchical Mixed Models A General Version of the Model Variance/Covariances of Two Kinds of Random Effects Parameter Estimation.
Learning Theory Reza Shadmehr Distribution of the ML estimates of model parameters Signal dependent noise models.
Computacion Inteligente Least-Square Methods for System Identification.
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
Donde Esta Lisrel. ssicentral
Financial Econometrics Lecture Notes 4
Lecture 12 Time Series Model Estimation
Structural Equation Modeling using MPlus
Linear Mixed Models in JMP Pro
CH 5: Multivariate Methods
Evgeniya Anatolievna Kolomak, Professor
Lecture 26 Modeling (1): Time Series Prediction
Angela B. Bradford School of Family Life
6-1 Introduction To Empirical Models
MULTIPLE REGRESSION ANALYSIS: THE PROBLEM OF ESTIMATION
Undergraduated Econometrics
LISREL matrices, LISREL programming
Structural Equation Modeling
Vector AutoRegression models (VARs)
Simple Linear Regression
The general linear model and Statistical Parametric Mapping
Linear Filters.
ESTIMATION METHODS We know how to calculate confidence intervals for estimates of  and 2 Now, we need procedures to calculate  and 2 , themselves.
Multivariate Methods Berlin Chen
General Structural Equation (LISREL) Models
Multivariate Methods Berlin Chen, 2005 References:
Lecturer Dr. Veronika Alhanaqtah
Rachael Bedford Mplus: Longitudinal Analysis Workshop 23/06/2015
Time Series introduction in R - Iñaki Puigdollers
Topic 11: Matrix Approach to Linear Regression
Autoregressive and Growth Curve Models
Presentation transcript:

MKFM6: multivariate stationary state-space time-series modeling using ML estimation in the Kalman Filter at yt et zt S H G at+1 yt+1 et+1 zt+1 Z B xt+1 R at-1 at-2

y[t] an ny dimensional random vector repeatedly observed at occasion t-1...t...t+1 in a sample of N=1 or N>1 Q Q zt zt+1 G G H H H at-1 at at+1 at-2 B B S S xt xt+1 Z yt Z yt+1 et et+1 t=1.....T R R

y[t] = S a[t] S=I Q Q zt zt+1 G G H H H at-1 at at+1 at-2 B B S S xt et et+1 R R

a[t+1] = H a[t+1] + G z[t+1] G=I y[t] = S a[t] a[t+1] = H a[t+1] + G z[t+1] G=I Q Q zt zt+1 G G H H H at-1 at at+1 at-2 B B S S xt xt+1 Z yt Z yt+1 et et+1 1st Order Autoregressive in structure, Markov model VARMA(p,q) models R R

y[t] = S a[t] + e[t] S≠I a[t+1] = H a[t+1] + G z[t+1] at latent (as in factor analysis) Q Q zt zt+1 G G H H H at-1 at at+1 at-2 B B S S xt xt+1 Z yt Z yt+1 yt observed et et+1 R R

y[t] = S a[t] + e[t] + Z x[t] a[t+1] = H a[t+1] + G z[t+1] covariance matrices regression parameters Q Q zt zt+1 G G H H H at-1 at at+1 at-2 B B S S xt xt+1 yt yt+1 Z Z et et+1 R R x is fixed regressor (e.g., if x=1, Z are means)

y[t] = S a[t] + e[t] + Z x[t] a[t+1] = H a[t+1] + G z[t+1] + B x[t+1] covariance matrices regression parameters Q Q zt zt+1 G G H H H at-1 at at+1 at-2 B B S S xt xt+1 yt yt+1 Z Z et et+1 R R

y[t] = S a[t] + d + e[t] + Z x[t] a[t+1] = H a[t+1] + c + G z[t+1] + B x[t+1] d and c superfluous, but convenient Q Q zt zt+1 G G at-1 H H at H at+1 at-2 B B xt S S xt+1 Z yt Z yt+1 et et+1 R R

y[t] = S a[t] + d + e[t] + Z x[t] a[t+1] = H a[t+1] + c + G z[t+1] + B x[t+1] d and c superfluous, but convenient Q Q zt zt+1 G G at-1 H H at H at+1 at-2 c c 1 S S 1 d yt d yt+1 et et+1 R R

N Groups T type Software large ≥1 small SEM LISREL, M+, Mx at y at+1 e at-1 zt-1 zt zt+1 yt-11 yt1 yt+11 ....... yT1 ..... yt-1N ytN yt+1N ....... yTN subject time N Groups T type Software large ≥1 small SEM LISREL, M+, Mx small ≥1 intermediate hybrid MKFM 1 ≥1 large Timeseries Many, MKFM Acually all structural equation modeling, the details dictate computational strategies

S=1 R=1 H=1 Q=1 d=1 c=0 Z=0 P=1 B=0 G=1 at y at+1 e at-1 zt-1 zt zt+1 S R H Q G 1 d Syntax nm=1 se=yes mo=1 ny=4 ne=1 nx=0 df=ts1 rf=no ns=1 mi=-9 S=1 R=1 H=1 Q=1 d=1 c=0 Z=0 P=1 B=0 G=1

S=1 R=1 H=1 Q=1 d=1 c=0 Z=0 P=1 B=0 G=1 R fi di 0 0 0 0 R fr di 1 2 3 4 G fi di 1 G fr di d fr 11 12 13 14 d fi H fi H fr 21 Q fi fu 1 Q fr fu 31 S fi S fr 41 42 43 Syntax

R parameters - diagonal 0.395 0.453 0.563 0.500 H parameters 0.799 Model 1 of 1 S parameters 1.000 0.934 0.812 0.683 R parameters - diagonal 0.395 0.453 0.563 0.500 H parameters 0.799 Q parameters 0.348 d parameters 4.936 5.081 5.030 4.947 G parameters - diagonal output Q zt-1 G at-1 1 H d S y y y y e e e e R

Colored lines - observed series Black line - estimated latent series (Kalman Filter)

at y at+1 e at-1 zt-1 zt zt+1 S R H Q G 1 d Q: what if H is zero?

at y at+1 e at-1 zt-1 zt zt+1 S R Q G 1 d Q: what if H is zero? A: data at each occasion are independent. If H is zero, I can fit the model in LISREL (or Mx, or M+) Or in MKFM6

H=0 at+1 y e zt+1 S R Q I S parameters 1.000 0.867 0.841 0.665 LAMBDA-Y Q parameters 0.949 PSI R parameters - diagonal 0.557 0.481 0.472 0.634 THETA-EPS 0.557 0.481 0.472 0.634

Similarities between the LISREL model and the MKF State- Space model. measurement (linear factor) model y[t] = Sa[t] + d + e[t] + Z x[t] y[i] = Lh[i] + t + e[i] structural regression model a[t+1] = H a[t+1] + c + G z[t+1] + B x[t+1] h[i] = B h[i] + a + I z[t+1] cov(e) = R cov(e) = Q regression parameters covariance matrices cov(z) = GQG' = Q cov(z) = Y Sy-Miin Chow et al. SEM 2010. next example VAR

Restricted vector autoregressive model, S=I a1t a2t a3t a1t+1 a2t+1 a3t+1 H 1 x B d Q Restricted vector autoregressive model, S=I y[t] and a[t] variables identical

Effect of x on a2 and a3 via a1 (a causal model) regression on fixed x x x B B Q a1t a1t+1 a2t a2t+1 H a3t a3t+1 intercepts d 1 1 Effect of x on a2 and a3 via a1 (a causal model)

timeseries a1, a2, a3 x fixed variable gaps: 25% missing in each series

x x B Q B a1t a1t+1 a2t a2t+1 H a3t a3t+1 d 1 G fi di 1 1 1 Q fi di G fr di 0 0 0 d fr 1 2 3 d fi H fi H fr 4 5 6 7 8 9 10 11 12 Q fi di 1 1 1 Q fr di 21 22 23 S fi di S fr di 0 0 0 B fr 31 32 33 B fi x x B Q B a1t a1t+1 a2t a2t+1 H a3t a3t+1 d 1 1 S=1 R=0 H=1 Q=1 d=1 c=0 Z=0 P=1 B=1 G=1 next example latent var

D - depression, A anxiety autoregressive / cross lagged regressive model - with indicators

D - depression, A anxiety wife A D husband

N=1 Meas. Inv. of indicators w.r.t. external variable x z z z z a a a a y y y y y y y y y y y y e e e e e e e e e e e e B S H d (not shown) i.e. intercepts G

N=1 Meas. Inv. of indicators w.r.t. external variable x f(yi|a*) = f(yi|a*,xi) z z a a y y y y y y e e e e e e

N=1 Meas. Inv. of indicators w.r.t. external variable x two indicators biased w.r.t. x. x x z z z z a a a a y y y y y y y y y y y y e e e e e e e e e e e e B S H Z (bias with respect to x) G f(yi|a*) ≠ f(yi|a*,xi)

f(yi|a*) = f(yi|a*,subjecti) z e x B f(yi|a*) = f(yi|a*,subjecti) Are the indicators measurement invariant w.r.t. subject (e.g., N=2)? d is invariant (intercepts equal), B zero in subject 1, B free in subject 2 X could equal 1.

f(yi|a*) = f(yi|a*,xi) f(yi|a*) = f(yi|a*,subjecti) Definition of measurement invariance in N=1 or N=2. + Interpretation as an intra-individual causal model Relationship with inter-individual causal model Issue of power: simulation? exact simulation? is N=100, T=1 relevant to N=1, T=100. Application (real data)

ML parameter estimates R11 0.51000 R22 0.36000 R33 0.51000 R44 0.36000 T=50 Ny=4 N=250 ML parameter estimates R11 0.51000 R22 0.36000 R33 0.51000 R44 0.36000 D1 0.00000 D2 0.00000 D3 0.00000 D4 0.00000 H 0.00000 Q 1.00000 S21 0.80000 S31 0.70000 S41 0.80000 ML parameter estimates 0.50998 (.51) 0.35997 (.36) 0.50994 (.51) 0.36001 (.36) -0.00153 (.0) -0.00175 (.0) 0.79994 (.80) 0.37097 (.36) 0.79994 (.8) 0.69997 (.7) 0.79992 (.8)

Good points: N=1, N=few, N=many Multigroup, where group is N=1 or N>1 No limitation on length of timeseries T Can handle N=few T=intermediate (a niche!) Missing data no problem (under assumptions) Model quite flexible Freely available (FORTRAN 77 code) Easy-ish to use Bad points: Stationarity (cov structure) ML fixed effect only (no random effects) Continuous indicators, conditional normality

Estimation: Maximum Likelihood in the Kalman Filter (prediction error decomp.) Documentation: mkfm.doc (manual with examples: DFA, ARMA, includes FORTAN source code) j_adolf.doc (more examples incl meas. inv.) some technical doc (online; Ellen Hamaker) My main reference: A.C. Harvey (1996). Forecasting, structural time series models and the Kalman Filter. Cambridge: Cambridge Univ. Press. Other good references: Hamilton, Kim & Nelson. One or two articles using MKFM: Ellen Hamaker (UU).

To use: 1) Organize data input (manual) 2) Write input script (manual) 3) Run analysis in DOS window mkfm6-1 < inputfile > outputfile

Input #1: Model specification title example simulated nm=1 se=yes S fi mo=1 ny=4 ne=1 nx=1 df=ts1mi rf=no ns=1 mi=-999 B=1 S=1 R=1 H=1 Q=1 d=1 c=0 Z=0 P=1 G=1 R fi di 0 0 0 0 R fr di 1 2 3 4 G fi di 1 G fr di d fr 11 12 13 14 d fi H fi H fr 21 Q fi Q fr 31 Input #1: Model specification S fi 1 S fr 41 42 43 B fi B fr 50 P fi 100 P fr st ... lb ub

Input part #2: the data file 250 4.621209 5.754381 6.855362 7.026104 0 data file: TS1MI 250 4.621209 5.754381 6.855362 7.026104 0 5.826427 6.732414 6.818705 5.448525 0 4.840544 4.112223 6.653377 7.070116 0 6.197258 7.596196 7.257844 3.101740 1 ..........

Output part#1: Model specification max nm= 5 nt=5000 ns= 10 ny=30 nx= 5 ne=30 npar=400 Read from input file title example simulated nm=1 se=yes mo=1 ny=4 ne=1 nx=1 df=ts1mi rf=no ns=1 mi=-999 B=1 S=1 R=1 H=1 Q=1 d=1 c=0 Z=0 P=1 G=1 =================== MKFv1 April 2010 Model 1 of 1 S fr parameters (nonzero) 11 12 13 R fr parameters (nonzero) - diagonal 1 2 3 4 H fr parameters (nonzero) 9 Q fr parameters (nonzero) 10 d fr parameters (nonzero) 5 6 7 8 B fr parameters (nonzero) 14 Output part#1: Model specification

Output part#2: Summary stats + parameter estimates, st errs, tvals DATA SUMMARY MODEL 1 of 1 NY= 4 NX= 1 NE= 1 Ncases= 1 START= 1 END= 1 CASE 1 T= 250 N of T missing= 0 datafile ts1mi State_0 0.00 var 1 2 3 4 %miss 0.2720 0.2640 0.2520 0.2880 mean 5.52 5.41 5.49 5.40 var 1.83 1.67 1.39 0.94 std 1.35 1.29 1.18 0.97 min 1.32 2.01 2.23 3.22 max 8.82 9.75 9.33 8.01 Number of fixed regressors 1 ML parameter estimates nr 1 0.55179 g 0.000026 se 0.0851 t 6.48 nr 2 0.51076 g 0.000012 se 0.0748 t 6.83 nr 3 0.68355 g 0.000048 se 0.0830 t 8.23 nr 4 0.44029 g 0.000038 se 0.0562 t 7.83 nr 5 4.47651 g 0.000020 se 0.2983 t 15.01 nr 6 4.47448 g 0.000051 se 0.2748 t 16.28 nr 7 4.73732 g -0.000049 se 0.2244 t 21.11 nr 8 4.71898 g -0.000096 se 0.1928 t 24.47 nr 9 0.72616 g -0.000106 se 0.0506 t 14.36 nr 10 0.48247 g -0.000055 se 0.0932 t 5.18 nr 11 0.92335 g 0.000051 se 0.0738 t 12.52 nr 12 0.71907 g -0.000143 se 0.0710 t 10.13 nr 13 0.62061 g -0.000031 se 0.0609 t 10.19 nr 14 0.95749 g -0.000021 se 0.1301 t 7.36 Logl -513.914 -2xLogL 1027.828 Inform(NPSOL) 0

Output part#3: parameter estimates in matrices title example simulated Model 1 of 1 S parameters 1.000 0.923 0.719 0.621 R parameters - diagonal 0.552 0.511 0.684 0.440 H parameters 0.726 Q parameters 0.482 P parameters 100.000 d parameters 4.477 4.474 4.737 4.719 G parameters - diagonal B parameters 0.957 P(t|t) error cov 0.233 Output part#3: parameter estimates in matrices