Presentation is loading. Please wait.

Presentation is loading. Please wait.

CHAPTER 4: Parametric Methods. Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 2 Parametric Estimation X = {

Similar presentations


Presentation on theme: "CHAPTER 4: Parametric Methods. Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 2 Parametric Estimation X = {"— Presentation transcript:

1 CHAPTER 4: Parametric Methods

2 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 2 Parametric Estimation X = { x t } t where x t ~ p (x) Parametric estimation: Assume a form for p (x | θ ) and estimate θ, its sufficient statistics, using X e.g., N ( μ, σ 2 ) where θ = { μ, σ 2 } Problem: How can we obtain θ from X? Assumption: X contains samples of a one- dimensional random variable Later multivariate estimation: X contains multiple and not only a single measurement.

3 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 3 Maximum Likelihood Estimation Density function p with parameters θ is given and x t ~p (X | θ ) Likelihood of θ given the sample X l ( θ |X) = p (X | θ ) = ∏ t p (x t | θ ) We look θ for that “maximizes the likelihood of the sample”! Log likelihood L( θ |X) = log l ( θ |X) = ∑ t log p (x t | θ ) Maximum likelihood estimator (MLE) θ * = argmax θ L( θ |X) Homework: Sample: 0, 3, 3, 4, 5 and x~N( ,  )? Use MLE to find( ,  )!

4 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 4 Examples: Bernoulli/Multinomial Bernoulli: Two states, failure/success, x in {0,1} P (x) = p o x (1 – p o ) (1 – x) L (p o |X) = log ∏ t p o x t (1 – p o ) (1 – x t ) MLE: p o = ∑ t x t / N Multinomial: K>2 states, x i in {0,1} P (x 1,x 2,...,x K ) = ∏ i p i x i L(p 1,p 2,...,p K |X) = log ∏ t ∏ i p i x i t MLE: p i = ∑ t x i t / N

5 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 5 Gaussian (Normal) Distribution p(x) = N ( μ, σ 2 ) MLE for μ and σ 2 : μ σ

6 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 6 Bias and Variance Unknown parameter θ Estimator d i = d (X i ) on sample X i Bias: b θ (d) = E [d] – θ Variance: E [(d–E [d]) 2 ] Mean square error of the estimator d: r (d, θ ) = E [(d– θ ) 2 ] = (E [d] – θ ) 2 + E [(d–E [d]) 2 ] = Bias 2 + Variance Error in the Model itselfVariation/randomness of the model

7 7 Bayes’ Estimator Treat θ as a random var with prior p ( θ ) Bayes’ rule: p ( θ |X) = p(X| θ ) * p( θ ) / p(X) Maximum a Posteriori (MAP): θ MAP = argmax θ p( θ |X) Maximum Likelihood (ML): θ ML = argmax θ p(X| θ ) Bayes’ Estimator: θ Bayes’ = E[ θ |X] = ∫ θ p( θ |X) d θ Comments: ML just takes the maximum value of the density function Compared with ML, MAP additionally considers priors Bayes’ estimator averages over all possible values of θ which are weighted by their likelihood to occur (which is measured by a probability distribution p( θ )). For MAP see: http://en.wikipedia.org/wiki/Maximum_a_posteriori_estimationhttp://en.wikipedia.org/wiki/Maximum_a_posteriori_estimation

8 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 8 Bayes’ Estimator: Example x t ~ N ( θ, σ o 2 ) and θ ~ N ( μ, σ 2 ) θ ML = m θ MAP = θ Bayes’ = σ   : converges to m

9 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 9 Parametric Classification kind of p(C i |x)

10 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 10 Given the sample ML estimates are Discriminant becomes

11 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 11 Equal variances Single boundary at halfway between means

12 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 12 Variances are different Two boundaries Homework!

13 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 13 Regression Maximizing the probability of the sample again!

14 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 14 Regression: From LogL to Error Skip to 20!

15 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 15 Linear Regression Relationship to what we discussed in Topic2??

16 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 16 Polynomial Regression Here we get k+1 equations with k+1 unknowns!

17 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 17 Other Error Measures Square Error: Relative Square Error: Absolute Error: E ( θ |X) = ∑ t |r t – g(x t | θ )| ε -sensitive Error: E ( θ |X) = ∑ t 1(|r t – g(x t | θ )|> ε ) (|r t – g(x t | θ )| – ε )

18 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 18 Bias and Variance biasvariance noisesquared error To be revisited next week!

19 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 19 Estimating Bias and Variance M samples X i ={x t i, r t i }, i=1,...,M are used to fit g i (x), i =1,...,M Initially skip!

20 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 20 Bias/Variance Dilemma Example: g i (x)=2 has no variance and high bias g i (x)= ∑ t r t i /N has lower bias with variance As we increase complexity, bias decreases (a better fit to data) and variance increases (fit varies more with data) Bias/Variance dilemma: (Geman et al., 1992)

21 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 21 bias variance f gigi g f Already visited as Topic4!

22 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 22 Polynomial Regression Best fit “min error”

23 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 23 Model Selection Cross-validation: Measure generalization accuracy by testing on data unused during training Regularization: Penalize complex models E’=error on data + λ model complexity Akaike’s information criterion (AIC), Bayesian information criterion (BIC) Minimum description length (MDL): Kolmogorov complexity, shortest description of data Structural risk minimization (SRM) Remark: will be discussed in more depth later: Topic 11

24 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 24 Bayesian Model Selection Prior on models, p(model) Regularization, when prior favors simpler models Bayes, MAP of the posterior, p(model|data) Average over a number of models with high posterior (voting, ensembles: Chapter 15)

25 CHAPTER 5: Multivariate Methods

26 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 26 Multivariate Data Multiple measurements (sensors) d inputs/features/attributes: d-variate N instances/observations/examples

27 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 27 Multivariate Parameters

28 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 28 Parameter Estimation

29 29 Multivariate Normal Distribution Mahalanobis distance between x and  http://www.analyzemath.com/Calculators/inverse_matrix_3by3.html

30 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 30 Multivariate Normal Distribution Mahalanobis distance: ( x – μ ) T ∑ –1 ( x – μ ) measures the distance from x to μ in terms of ∑ (normalizes for difference in variances and correlations) Bivariate: d = 2 Remark:  is the correlation between the two variables Called z-score zi for xi

31 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 31 Bivariate Normal

32 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 32

33 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 33 Independent Inputs: Naive Bayes If x i are independent, offdiagonals of ∑ are 0, Mahalanobis distance reduces to weighted (by 1/ σ i ) Euclidean distance: If variances are also equal, reduces to Euclidean distance

34 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 34 Parametric Classification If p (x | C i ) ~ N ( μ i, ∑ i ) Discriminant functions are

35 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 35 Estimation of Parameters

36 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 36 Different S i Quadratic discriminant skip

37 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 37 likelihoods posterior for C 1 discriminant: P (C 1 |x ) = 0.5

38 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 38 Common Covariance Matrix S Shared common sample covariance S Discriminant reduces to which is a linear discriminant Initially skip!

39 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 39 Common Covariance Matrix S Initially skip!

40 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 40 Diagonal S When x j j = 1,..d, are independent, ∑ is diagonal p (x|C i ) = ∏ j p (x j |C i )(Naive Bayes’ assumption) Classify based on weighted Euclidean distance (in s j units) to the nearest mean Likely covered in April!

41 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 41 Diagonal S variances may be different

42 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 42 Diagonal S, equal variances Nearest mean classifier: Classify based on Euclidean distance to the nearest mean Each mean can be considered a prototype or template and this is template matching

43 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 43 Diagonal S, equal variances * ?

44 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 44 Model Selection As we increase complexity (less restricted S), bias decreases and variance increases Assume simple models (allow some bias) to control variance (regularization) AssumptionCovariance matrixNo of parameters Shared, HypersphericSi=S=s2ISi=S=s2I1 Shared, Axis-alignedS i =S, with s ij =0d Shared, HyperellipsoidalSi=SSi=Sd(d+1)/2 Different, Hyperellipsoidal SiSi K d(d+1)/2

45 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 45 Discrete Features Binary features: if x j are independent (Naive Bayes’) the discriminant is linear Estimated parameters skip!

46 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 46 Discrete Features Multinomial (1-of-n j ) features: x j  {v 1, v 2,..., v n j } if x j are independent skip!

47 Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 47 Multivariate Regression Multivariate linear model Multivariate polynomial model: Define new higher-order variables z 1 =x 1, z 2 =x 2, z 3 =x 1 2, z 4 =x 2 2, z 5 =x 1 x 2 and use the linear model in this new z space (basis functions, kernel trick, SVM: Chapter 10) skip!


Download ppt "CHAPTER 4: Parametric Methods. Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 2 Parametric Estimation X = {"

Similar presentations


Ads by Google