Chapter 17 From Gene to Protein.

Slides:



Advertisements
Similar presentations
Gene  Protein Chapter 17.
Advertisements

Chapter 17~ From Gene to Protein
CHAPTER 10 Molecular Biology of the Gene
Overview: The Flow of Genetic Information
Chapter 17 From Gene to Protein.
From Gene To Protein Chapter 17. The Connection Between Genes and Proteins Proteins - link between genotype (what DNA says) and phenotype (physical expression)
Chapter 17 Notes From Gene to Protein.
Chapter 17 From Gene to Protein.
AP Biology Ch. 17 From Gene to Protein.
The information content of DNA is in the form of specific sequences of nucleotides The DNA inherited by an organism leads to specific traits by dictating.
From Gene to Protein A.P. Biology. Regulatory sites Promoter (RNA polymerase binding site) Start transcription DNA strand Stop transcription Typical Gene.
Transcription Translation
BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.
Chapter 17 From Gene to Protein
Chapter 17 From Gene to Protein. Gene Expression DNA leads to specific traits by synthesizing proteins Gene expression – the process by which DNA directs.
Mutations are changes in the genetic material of a cell or virus
Overview: The Flow of Genetic Information
Ch. 17 From Gene to Protein. Genes specify proteins via transcription and translation DNA controls metabolism by directing cells to make specific enzymes.
Chapter 17: Molecular Basis of Inheritance. Overview: The Flow of Genetic Information The information content of DNA is in the form of specific sequences.
RESULTS EXPERIMENT CONCLUSION Growth: Wild-type cells growing and dividing No growth: Mutant cells cannot grow and divide Minimal medium Classes of Neurospora.
THE FLOW OF GENETIC INFORMATION FROM DNA TO RNA TO PROTEIN
Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings THE FLOW OF GENETIC INFORMATION FROM DNA TO RNA TO PROTEIN The DNA genotype is.
Protein Synthesis Chapter 17. Protein synthesis  DNA  Responsible for hereditary information  DNA divided into genes  Gene:  Sequence of nucleotides.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Chapter 17: From Gene to Protein. Figure LE 17-2 Class I Mutants (mutation In gene A) Wild type Class II Mutants (mutation In gene B) Class III.
DNA  RNA  protein Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings.
RNA processing and Translation. Eukaryotic cells modify RNA after transcription (RNA processing) During RNA processing, both ends of the primary transcript.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Overview: The Flow of Genetic Information The information content of DNA is in.
N Chapter 17~ From Gene to Protein. Protein Synthesis: overview n One gene-one enzyme hypothesis (Beadle and Tatum) –The function of a gene is to dictate.
Chapter 17 From Gene to Protein.
Chapter 17 From Gene to Protein.
Chapter 17 From Gene to Protein.
Overview: The Flow of Genetic Information DNA  RNA Protein
The Ribosome Is part of the cellular machinery for translation, polypeptide synthesis Figure 17.1.
Chapters’ 12 and 13 Gene Expression and Gene Regulation
DNA Transcription and Translation
Forensic DNA Analysis Protein Synthesis.
Chapter 17 From Gene to Protein
Ch 17 - From Gene to Protein
Chapter 17 From Gene to Protein 1.
Chapter 13: Protein Synthesis
Protein Synthesis Ch 17.
Protein Synthesis.
Overview: The Flow of Genetic Information
Chapter 17 From Gene to Protein DNA mRNA Ribosome Polypeptide
The Central Dogma of Life.
Translation Now that the mRNA is created, we must translate that information into protein. Transfer RNA (tRNA) will be used in this process. This process.
The Flow of Genetic Information
Gene Expression: From Gene to Protein
Concept 17.3: Eukaryotic cells modify RNA after transcription
Protein Synthesis.
Chapter 17 – From Gene to Protein
Transcription is the synthesis of RNA under the direction of DNA
Chapter 17 From Gene to Protein.
Transcription and Translation Mader Biology Chapter 14
From Gene to Protein Chapter 17
Fig
Chapter 17 From Gene to Protein.
Chapter 17 Hon. Adv. Biology Notes 12/01/06
Mutations are changes in the genetic material of a cell or virus
Chapter 17 From Gene to Protein.
Figure 17.1 Figure 17.1 How does a single faulty gene result in the dramatic appearance of an albino deer?
CHAPTER 10 Molecular Biology of the Gene
CHAPTER 17 FROM GENE TO PROTEIN.
Chapter 17 From Gene to Protein.
Chapter 17 From Gene to Protein.
Translation and Mutation
Chapter 14: Protein Synthesis
Chapter 17 (B) From Gene to Protein “Translation”.
Presentation transcript:

Chapter 17 From Gene to Protein

The Products of Gene Expression: A Developing Story Some proteins aren’t enzymes, so researchers later revised the hypothesis: one gene–one protein Many proteins are composed of several polypeptides, each of which has its own gene Therefore, Beadle and Tatum’s hypothesis is now restated as the one gene–one polypeptide hypothesis Note that it is common to refer to gene products as proteins rather than polypeptides Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Basic Principles of Transcription and Translation RNA is the intermediate between genes and the proteins for which they code Transcription is the synthesis of RNA under the direction of DNA Transcription produces messenger RNA (mRNA) Translation is the synthesis of a polypeptide, which occurs under the direction of mRNA Ribosomes are the sites of translation Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

A primary transcript is the initial RNA transcript from any gene The central dogma is the concept that cells are governed by a cellular chain of command: DNA -(transcribes)RNA –(translates)protein Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Fig. 17-3 DNA TRANSCRIPTION mRNA Ribosome TRANSLATION Polypeptide (a) Bacterial cell Nuclear envelope DNA TRANSCRIPTION Pre-mRNA RNA PROCESSING Figure 17.3 Overview: the roles of transcription and translation in the flow of genetic information mRNA TRANSLATION Ribosome Polypeptide (b) Eukaryotic cell

Nuclear envelope DNA TRANSCRIPTION Pre-mRNA (b) Eukaryotic cell Fig. 17-3b-1 Nuclear envelope DNA TRANSCRIPTION Pre-mRNA Figure 17.3 Overview: the roles of transcription and translation in the flow of genetic information (b) Eukaryotic cell

Nuclear envelope DNA TRANSCRIPTION Pre-mRNA mRNA (b) Eukaryotic cell Fig. 17-3b-2 Nuclear envelope DNA TRANSCRIPTION Pre-mRNA RNA PROCESSING mRNA Figure 17.3 Overview: the roles of transcription and translation in the flow of genetic information (b) Eukaryotic cell

Nuclear envelope DNA TRANSCRIPTION Pre-mRNA mRNA TRANSLATION Ribosome Fig. 17-3b-3 Nuclear envelope DNA TRANSCRIPTION Pre-mRNA RNA PROCESSING mRNA Figure 17.3 Overview: the roles of transcription and translation in the flow of genetic information TRANSLATION Ribosome Polypeptide (b) Eukaryotic cell

Each codon specifies the addition of one of 20 amino acids Codons along an mRNA molecule are read by translation machinery in the 5 to 3 direction Each codon specifies the addition of one of 20 amino acids Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Gene 2 Gene 1 Gene 3 DNA template strand mRNA Codon TRANSLATION Fig. 17-4 Gene 2 DNA molecule Gene 1 Gene 3 DNA template strand TRANSCRIPTION Figure 17.4 The triplet code mRNA Codon TRANSLATION Protein Amino acid

All 64 codons were deciphered by the mid-1960s Cracking the Code All 64 codons were deciphered by the mid-1960s Of the 64 triplets, 61 code for amino acids; 3 triplets are “stop” signals to end translation The genetic code is redundant but not ambiguous; no codon specifies more than one amino acid Codons must be read in the correct reading frame (correct groupings) in order for the specified polypeptide to be produced Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

First mRNA base (5 end of codon) Third mRNA base (3 end of codon) Fig. 17-5 Second mRNA base First mRNA base (5 end of codon) Third mRNA base (3 end of codon) Figure 17.5 The dictionary of the genetic code

Evolution of the Genetic Code The genetic code is nearly universal, shared by the simplest bacteria to the most complex animals Genes can be transcribed and translated after being transplanted from one species to another Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

(a) Tobacco plant expressing a firefly gene (b) Pig expressing a Fig. 17-6 Figure 17.6 Expression of genes from different species (a) Tobacco plant expressing a firefly gene (b) Pig expressing a jellyfish gene

Completed RNA transcript Fig. 17-7 Promoter Transcription unit 5 3 3 5 DNA Start point RNA polymerase 1 Initiation Elongation Nontemplate strand of DNA RNA nucleotides 5 3 RNA polymerase 3 5 RNA transcript Template strand of DNA Unwound DNA 3 2 Elongation 3 end Rewound DNA 5 5 3 3 3 5 5 Figure 17.7 The stages of transcription: initiation, elongation, and termination 5 Direction of transcription (“downstream”) RNA transcript Template strand of DNA 3 Termination Newly made RNA 5 3 3 5 5 3 Completed RNA transcript

Synthesis of an RNA Transcript The three stages of transcription: Initiation Elongation Termination Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Split Genes and RNA Splicing Most eukaryotic genes and their RNA transcripts have long noncoding stretches of nucleotides that lie between coding regions These noncoding regions are called intervening sequences, or introns The other regions are called exons because they are eventually expressed, usually translated into amino acid sequences RNA splicing removes introns and joins exons, creating an mRNA molecule with a continuous coding sequence Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

exons spliced together Coding segment Fig. 17-10 5 Exon Intron Exon Intron Exon 3 Pre-mRNA 5 Cap Poly-A tail 1 30 31 104 105 146 Introns cut out and exons spliced together Coding segment mRNA 5 Cap Poly-A tail 1 146 Figure 17.10 RNA processing: RNA splicing 5 UTR 3 UTR

Three properties of RNA enable it to function as an enzyme It can form a three-dimensional structure because of its ability to base pair with itself Some bases in RNA contain functional groups RNA may hydrogen-bond with other nucleic acid molecules Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Gene DNA Exon 1 Intron Exon 2 Intron Exon 3 Transcription Fig. 17-12 Gene DNA Exon 1 Intron Exon 2 Intron Exon 3 Transcription RNA processing Translation Domain 3 Figure 17.12 Correspondence between exons and protein domains Domain 2 Domain 1 Polypeptide

Amino acids tRNA with amino acid attached Ribosome tRNA Anticodon 5 Fig. 17-13 Amino acids Polypeptide tRNA with amino acid attached Ribosome Trp Phe Gly Figure 17.13 Translation: the basic concept tRNA Anticodon 5 Codons 3 mRNA

Figure 17.14 The structure of transfer RNA (tRNA) 3 Amino acid attachment site 5 Hydrogen bonds Anticodon (a) Two-dimensional structure 5 Amino acid attachment site 3 Figure 17.14 The structure of transfer RNA (tRNA) Hydrogen bonds 3 5 Anticodon Anticodon (c) Symbol used in this book (b) Three-dimensional structure

(a) Computer model of functioning ribosome Fig. 17-16a Growing polypeptide Exit tunnel tRNA molecules Large subunit E P A Small subunit Figure 17.16 The anatomy of a functioning ribosome 5 3 mRNA (a) Computer model of functioning ribosome

(b) Schematic model showing binding sites Fig. 17-16b P site (Peptidyl-tRNA binding site) A site (Aminoacyl- tRNA binding site) E site (Exit site) E P A Large subunit mRNA binding site Small subunit (b) Schematic model showing binding sites Growing polypeptide Amino end Next amino acid to be added to polypeptide chain Figure 17.16 The anatomy of a functioning ribosome E tRNA mRNA 3 Codons 5 (c) Schematic model with mRNA and tRNA

Building a Polypeptide The three stages of translation: Initiation Elongation Termination All three stages require protein “factors” that aid in the translation process Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Ribosome Association and Initiation of Translation The initiation stage of translation brings together mRNA, a tRNA with the first amino acid, and the two ribosomal subunits First, a small ribosomal subunit binds with mRNA and a special initiator tRNA Then the small subunit moves along the mRNA until it reaches the start codon (AUG) Proteins called initiation factors bring in the large subunit that completes the translation initiation complex Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Mutations are changes in the genetic material of a cell or virus Concept 17.5: Point mutations can affect protein structure and function Mutations are changes in the genetic material of a cell or virus Point mutations are chemical changes in just one base pair of a gene The change of a single nucleotide in a DNA template strand can lead to the production of an abnormal protein Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Wild-type hemoglobin DNA Mutant hemoglobin DNA 3 C T T 5 3 C A T 5 Fig. 17-22 Wild-type hemoglobin DNA Mutant hemoglobin DNA 3 C T T 5 3 C A T 5 5 G A A 3 5 G T A 3 mRNA mRNA 5 G A A 3 5 G U A 3 Figure 17.22 The molecular basis of sickle-cell disease: a point mutation Normal hemoglobin Sickle-cell hemoglobin Glu Val

Types of Point Mutations Point mutations within a gene can be divided into two general categories Base-pair substitutions Base-pair insertions or deletions Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Figure 17.23 Types of point mutations Wild-type DNA template strand 3 5 5 3 mRNA 5 3 Protein Stop Amino end Carboxyl end A instead of G Extra A 3 5 3 5 5 3 5 3 U instead of C Extra U 5 3 5 3 Stop Stop Silent (no effect on amino acid sequence) Frameshift causing immediate nonsense (1 base-pair insertion) T instead of C missing 3 5 3 5 5 3 5 3 A instead of G missing 5 3 5 3 Stop Figure 17.23 Types of point mutations Missense Frameshift causing extensive missense (1 base-pair deletion) A instead of T missing 3 5 3 5 5 3 5 3 U instead of A missing 5 3 5 3 Stop Stop Nonsense No frameshift, but one amino acid missing (3 base-pair deletion) (a) Base-pair substitution (b) Base-pair insertion or deletion

Mutagens are physical or chemical agents that can cause mutations Spontaneous mutations can occur during DNA replication, recombination, or repair Mutagens are physical or chemical agents that can cause mutations Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings