Heriot-Watt, School of Engineering & Physical Sciences

Slides:



Advertisements
Similar presentations
Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Advertisements

Computer Graphics: 2D Transformations
Variations of the Turing Machine
Nature of light and theories about it
Adders Used to perform addition, subtraction, multiplication, and division (sometimes) Half-adder adds rightmost (least significant) bit Full-adder.
AP STUDY SESSION 2.
1
Ecole Nationale Vétérinaire de Toulouse Linear Regression
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 12 Cross-Layer.
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
STATISTICS Joint and Conditional Distributions
STATISTICS HYPOTHESES TEST (I)
STATISTICS INTERVAL ESTIMATION Professor Ke-Sheng Cheng Department of Bioenvironmental Systems Engineering National Taiwan University.
STATISTICS Univariate Distributions
David Burdett May 11, 2004 Package Binding for WS CDL.
Measurements and Their Uncertainty 3.1
Spectral Clustering Eyal David Image Processing seminar May 2008.
Chapter 7 Sampling and Sampling Distributions
Evaluating Window Joins over Unbounded Streams Author: Jaewoo Kang, Jeffrey F. Naughton, Stratis D. Viglas University of Wisconsin-Madison CS Dept. Presenter:
1 Click here to End Presentation Software: Installation and Updates Internet Download CD release NACIS Updates.
Biostatistics Unit 5 Samples Needs to be completed. 12/24/13.
Pole Placement.
Break Time Remaining 10:00.
EE, NCKU Tien-Hao Chang (Darby Chang)
Turing Machines.
Table 12.1: Cash Flows to a Cash and Carry Trading Strategy.
Detection Chia-Hsin Cheng. Wireless Access Tech. Lab. CCU Wireless Access Tech. Lab. 2 Outlines Detection Theory Simple Binary Hypothesis Tests Bayes.
PP Test Review Sections 6-1 to 6-6
Notes 18 ECE Microwave Engineering Multistage Transformers
The Fourier Transform I
LIAL HORNSBY SCHNEIDER
Outline Minimum Spanning Tree Maximal Flow Algorithm LP formulation 1.
Bellwork Do the following problem on a ½ sheet of paper and turn in.
CS 6143 COMPUTER ARCHITECTURE II SPRING 2014 ACM Principles and Practice of Parallel Programming, PPoPP, 2006 Panel Presentations Parallel Processing is.
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
Computer vision: models, learning and inference
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Joint work with Andre Lieutier Dassault Systemes Domain Theory and Differential Calculus Abbas Edalat Imperial College Oxford.
Mike Doggett Staffordshire University
Adding Up In Chunks.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
S Transmission Methods in Telecommunication Systems (5 cr)
Splines IV – B-spline Curves
6.4 Best Approximation; Least Squares
A Novel Hemispherical Basis for Accurate and Efficient Rendering P. Gautron J. Křivánek S. Pattanaik K. Bouatouch Eurographics Symposium on Rendering 2004.
Trigonometry Trigonometry begins in the right triangle, but it doesn’t have to be restricted to triangles. The trigonometric functions carry the ideas.
DTU Informatics Introduction to Medical Image Analysis Rasmus R. Paulsen DTU Informatics TexPoint fonts.
1 Let’s Recapitulate. 2 Regular Languages DFAs NFAs Regular Expressions Regular Grammars.
Essential Cell Biology
Chapter 8 Estimation Understandable Statistics Ninth Edition
Exponents and Radicals
PSSA Preparation.
Chapter 13: Digital Control Systems 1 ©2000, John Wiley & Sons, Inc. Nise/Control Systems Engineering, 3/e Chapter 13 Digital Control Systems.
Physics for Scientists & Engineers, 3rd Edition
Energy Generation in Mitochondria and Chlorplasts
16. Mean Square Estimation
9. Two Functions of Two Random Variables
1 Dr. Scott Schaefer Least Squares Curves, Rational Representations, Splines and Continuity.
1 Decidability continued…. 2 Theorem: For a recursively enumerable language it is undecidable to determine whether is finite Proof: We will reduce the.
Math Review with Matlab:
Copyright © Cengage Learning. All rights reserved.
Adaptive Segmentation Based on a Learned Quality Metric
On Empirical Mode Decomposition and its Algorithms
Paradoxes on Instantaneous Frequency a la Leon Cohen Time-Frequency Analysis, Prentice Hall, 1995 Chapter 2: Instantaneous Frequency, P. 40.
An introduction to Empirical Mode Decomposition. The simplest model for a signal is given by circular functions of the type Such “Fourier modes” are of.
Paradoxes on Instantaneous Frequency
Lecture 16: Hilbert-Huang Transform Background:
Presentation transcript:

Heriot-Watt, School of Engineering & Physical Sciences One, Two or Many Frequencies: Synchrosqueezing and Multicomponent Signal Analysis Steve McLaughlin Heriot-Watt, School of Engineering & Physical Sciences with thanks to Patrick Flandrin, Mike Davies, Yannis Kopsinis, Sylvain Meignen, Thomas Oberlin

Structure Introduction Signals, Time and Frequency Empirical Mode Decomposition SynchroSqueezing

What are signals? A signal is a time (or space) varying quantity that can carry information. The concept is broad, and hard to define precisely. (Wikipedia)

What are signals made of? The Frequency viewpoint (Fourier): Joseph Fourier Signals can be built from the sum of harmonic functions (sine waves) Continuous to discrete Nyquist/Shannon Sampling Theorem Representing signals as impulses or sums of sinusoids signal Harmonic functions Fourier coefficients

What is a Signal? The intrinsic dynamics of the vocal folds can produce complex temporal acoustic call patterns without complex nervous system control W. Tecumseh Fitch, “Calls out of chaos: the adaptive significance of nonlinear phenomena in mammalian vocal production”, Animal Behaviour, 2002

What is a Signal Frequency modulation (FM) implies the instantaneous frequency varies. This contrasts with amplitude modulation, in which it is the amplitude which is varied while its frequency remains constant. Many signals can be modeled as a sum of AM and FM components.

Empirical Mode Decomposition Basic idea is very simple: signal = fast oscillation + slow oscillation (& iteration) - Separation “fast vs slow’ data driven Local analysis based on neighbouring extrema Oscillation rather than frequency

Empirical Mode Decomposition Identify local maxima and local minima Deduce an upper envelope and a lower envelope by interpolation (cubic splines) subtract the mean envelope from the signal iterate until “mean envelope = 0" (sifting) subtract the obtained mode from the signal iterate on the residual

Empirical Mode Decomposition: Sifting

EMD - Summary Locality — The method operates at the scale of one oscillation Adaptive — The decomposition is fully data-driven Multi-resolution — The iterative process explores sequentially the “natural” scales of a signal Oscillations of any type — No assumption on the nature of oscillations (e.g., harmonic) ⇒ 1 nonlinear oscillation = 1 mode No analytic definition — The decomposition is only defined as the output of an algorithm ⇒ analysis and evaluation ?

What is frequency? Frequency is the number of occurrences of a repeating event per unit time. It is also referred to as temporal frequency. The period is the duration of one cycle in a repeating event, so the period is the reciprocal of the frequency. (Wikipedia)

What is frequency? Macaque Fatima Miranda Amolops tormotus

Hilbert Spectrum Can we produce TF-representation plots based on the IF, IA estimates? Hilbert Spectrum: IA and IF are combined in order to form a spectrogram-like plot, H(t,f ). Specifically, for any time instant t, H(t,f )=α(t) if IF(t) equals to f and zero at the rest of the frequencies. In practice, a Time – Frequency grid is adopted in order to construct H(t,f ). Steve, Hilbert spectrum was initially used for plotting the IF of the IMFs produced by EMD.

On Instantaneous Frequency (Monocomponent signals) Steve, on the left we see a linear chirp going from frequency 90KHz down to 55. This chirp is also modulated by a sinusoid. The Frequency of the sinusoid for the amplitude modulation is much lower than the frequency of chirp. So the signal can be characterised as monocomponent. In the case of monocomponent signals, IF coincides with the actual frequency of the signal.

Instantaneous Frequency Multicomponent signals Steve, Fig a1: Fist component – it is a linear chirp; Fig a2: Second component – it is a linear chirp parallel to the one of Fig a1; Fig a3: Sum of the two components. Fig b1: Hilbert spectrum of the signal (shown in Fig a3). The green dashed lines shows the actual frequency of the two components (of Fig a1 and Fig a2). Fig b2: Shows the Hilbert spectrum of the unweighted averaged IF. Fig b3: Shows the IA which is used for the production of the Hilbert spectrum. (See also discussion on page 3 left column, last paragraph) IF is a non-symmetric oscillation exhibiting spikes that point toward the component with the larger amplitude. The strength of the IF oscillations (that is the height of the spikes) depends on the relative amplitudes of the components. Smoothing, , forces IF to “lock” at the component with the higher amplitude

Instantaneous Frequency Multicomponent signals The further apart in frequency the components are, the larger the amplitude of oscillations become. The frequency of oscillations is relative to the frequency difference.

Beating When a signal is composed of two components with close instantaneous frequencies, EMD exhibits a beating phenomenon [Rilling and Flandrin (2008)]. More precisely, if a signal is composed of two harmonics, i.e., f(t) = cos(2πt)+a cos(2πξ0t), Rillingand Flandrin [2008] show an interesting zone in the a vs. ξ plane (amplitude vs. frequency plane) where EMD misidentifies the sum of two components as only a single component; the precise shape of this zone depends on the value ξ0. They also quantified this phenomenon and termed it beating, because EMD “identified” the two harmonics as a single oscillating (i.e., beating) signal.

Time Frequency Reassignment and SSQ Time-Frequency Reassignment originates from a study of the STFT, which smears the energy of the superimposed Instantaneous Frequencies around their center frequencies in the spectrogram. TFR analysis “reassigns” these energies to sharpen the spectrogram Synchrosqueezing is a special case of reassignment methods [Auger and Flandrin (1995); Chassande–Mottin et al. (2003,1997)]. SSQ reallocates the coefficients resulting from a continuous wavelet transform based on the frequency information, to get a concentrated picture over the time-frequency plane, from which the instantaneous frequencies are then extracted It is adaptive to the signal; Reconstruction of the signal from the reallocated coefficients is feasible Solid Theoretical foundations

Idea from Daubechies & Maes 1996 SynchroSqueezing Idea from Daubechies & Maes 1996 Concentrate (squeeze) wavelet coefficients, at fixed times, on the basis of local frequency estimation (synchronised) Guarantees a sharply localised representation Allows for reconstruction of identified modes Offers a mathematical tractable alternative to EMD

Synchrosqueezing – Reconstruction Approach We are interested in the retrieval of the components fk of a multicomponent signal f defined by: The problem can be viewed from two perspectives. The first consists of computing an approximation of the modes, either by using EMD or via wavelet projections. The second uses the SST to reallocate the WT before proceeding with multicomponent retrieval

Underlying theory First recall some results first proposed by Daubechies et al 2011. For a signal defined as a superposition of intrinsic-mode-type functions (IMT):

Underlying theory Where d is a separation condition.

Theorem

Theorem - Conditions

Theorem – A Remark Component retrieval using the SST is thus first based on the computation of the synchrosqueezing operator and then on its integration in the vicinity of curves defined by ..

Retrieval of Multiple Components (RCM): Practical Implemetation (Brevdo et al 2011) The strategy developed by Brevdo et al for the RCM is to proceed on a component by component basis. The idea is to find a curve ,in the time-frequency plane such that it maximizes the energy which forces the modes to be smooth through a total variation term penalization and is obtained by computing the following quantity:

SST Parameters - WT of Pure Harmonic Signals When dealing with a signal made of pure harmonics The separation of the components using the WT is equivalent to the support of the WT of each component being disjoint that is for all k>1 : Finally, using the definition of the separation condition introduced in Definition 2, when there is no interference between the components and

SST Parameters - WT of an ε-IMT Let f(t) be a mode as defined in Definition 2, then the WT of f is now approximated by: the approximation error being controlled by (C1(f)B1+C2(f)B2+(C3(f)B3), (see Brevdo et al 2011), where Ci, 1≤i≤3, does not depend on the wavelet choice, while So, when is high, a low approximation error requires that must be small. One way to ensure this is to impose that has a fast decay or equivalently, that be large.

SST Parameters - WT of a Superposition of ε-IMT For a multi-component signal as defined in Definition 2 we wish to have the following approximation: So, following the study on a single component, a low approximation error requires that be large enough. Then, we also want each component to be well separated from the other components (which is compulsory if we are to use the WT for mode retrieval), that is for each (a,t) the sum above should be reduced to a single term which is true provided that: Taking into account the separation condition (see Definition 2), we can deduce that the above inequality is true as soon as

Related Work It is worth noting that the behavior of the SST was studied in detail by Wu et al 2011 for two tone signals. However, no conclusions can be drawn from the latter regarding modulated signals because the modulation considerably alters the wavelet representation of such signals and consequently the results given by the SST. A very similar study was carried out by Mallat, ([14, p. 102]), but using a mother wavelet which was symmetric and compactly supported in the time domain. In such a case, the second order terms in the approximation would be negligible only if for all k: provided

Observation This second constraint when applied to an -IMT implies that Φk is such that ,provided that , which is true when ,or equivalently . If we assume that both Ak and are bounded below, the quality of the approximation is better if is small when is large. Since one must also have ( where is the frequency bandwidth of the wavelet) to ensure separation of a different component, cannot be taken arbitrarily small. In contrast to the previous approach, the trade-off parameter between separation and localization of the components is now . The size of the frequency support of the mother wavelet plays a fundamental role when dealing with multi-component signals; adjusting this parameter enables us to tune between good separation and good localization of the modes. In the sequel we will use the previous remark regarding the size of the frequency support of the mother wavelet to build a new RCM algorithm.

A New RCM The algorithm aims at identifying the ridge associated with each component from the magnitude of the WT and then reconstructing the components by using the information in the vicinity of the different ridges. It is based on three distinct steps: - first determine adaptively the number of modes - compute an optimal wavelet threshold - use threshold to retrieve the modes. Code at: http://www-ljk.imag.fr/membres/Sylvain.Meignen/recherche/index.html

Automatic detection of the number of modes Since, for a given time t, the scales of interest in the SST are those where is large enough, we aim at detecting the modes using the following sets: The natural expectation is that given t and when γ is appropriately chosen, each element will be associated with a single mode as defined above). Note: The normalization of the wavelet transform we use is necessary to give sense to the above set. We compute an estimate of the number of modes at time t is: The number of modes is defined as:

Wavelet Threshold Once the number of modes is determined, we first consider the sets: and define T0 as the times t associated with non empty S0(t). A threshold for the WT and t in T0 is then computed as follows:

The Algorithm for Retrieving the Modes We consider for each t in T0 the set Inf-k+1(t), which enables us to retrieve the mode k by applying the following approximation formula: Note that the index of I in the sum comes from the fact that Ik for small k corresponds to a high frequency component and that in Definition (2) the components are arranged in increasing frequency order. This reconstruction procedure is fully automatic and avoids the need to narrow down the curve searching in the time-scale space before proceeding with the mode retrieval.

Example of a signal made of non-trivial intrinsic mode type signals

Modulus of the corresponding Wavelet Transform

Reconstruction using a bump wavelet

Reconstruction as before but using alternative reconstruction formulae

Non Uniform Sampling To adaptively choose non-uniform samples to minimize the interpolation error is a thorny issue. A method inspired by the EMD consists of selecting the extrema of the signal, such that they depend locally on the strength of the oscillations. Another possibility would be to choose equi-spaced sample points over the whole signal duration. Methods 1. Consider non-uniform sample points for the location of the extrema of the high frequency mode given by the RCM proposed and then piecewise cubic Hermite interpolation of f at these points. 2. Follow the same framework as the above, but the sample points being equi-spaced with the same average sampling rate.

Further Work Strong modulation Non-uniform sampling Signals with a piecewise regular TF representation

Thank You

References E. Brevdo, N. S. Fuckar, G. Thakur, and H.-T. Wu, “The synchrosqueezing algorithm for time-varying spectral analysis: Robust properties and new plaeoclimate applications,” 2011, arXiv preprint ID: 1105.0010. E. Chassande-Mottin, I. Daubechies, F. Auger, and P. Flandrin, “Differential reassignment,” IEEE Signal Process. Lett., vol. 4, no. 10, pp. 293–294, 1997. I. Daubechies, J. Lu, and H.-L. Wu, “Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool,” Appl. Computat. Harmon. Anal., vol. 20, no. 2, pp. 243–261, 2011. H.-T. Wu, P. Flandrin, and I. Daubechies, “One or two frequencies? The synchrosqueezing answer,” Adv. Adapt. Data Anal., vol. 3, no. 1–2, pp. 29–39, 2011. S. Mallat, A Wavelet Tour on Signal Processing. NewYork:Academic,1998. G. Rilling, P. Flandrin, and P. Goncalves, “On empirical mode decomposition and its algorithms,” in Proc. IEEE-EURASIP Workshop on Nonlin. Signal and Image Process. (NSIP), Grado (I), Jun, 2003.