Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
Semiconductor Device Modeling and Characterization – EE5342 Lecture 35 – Spring 2011 Professor Ronald L. Carter
Advertisements

Semiconductor Device Modeling and Characterization – EE5342 Lecture 6 – Spring 2011 Professor Ronald L. Carter
L28 April 281 EE5342 – Semiconductor Device Modeling and Characterization Lecture 28 - Spring 2005 Professor Ronald L. Carter
L14 March 31 EE5342 – Semiconductor Device Modeling and Characterization Lecture 14 - Spring 2005 Professor Ronald L. Carter
L30 May 61 EE5342 – Semiconductor Device Modeling and Characterization Lecture 30 - Spring 2004 Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2010 Professor Ronald L. Carter
L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE Spring 2001 Professor Ronald L. Carter
L23 08April031 Semiconductor Device Modeling and Characterization EE5342, Lecture 23 Spring 2003 Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 27 – Spring 2011 Professor Ronald L. Carter
L27 23Apr021 Semiconductor Device Modeling and Characterization EE5342, Lecture 27 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter
L19 26Mar021 Semiconductor Device Modeling and Characterization EE5342, Lecture 19 -Sp 2002 Professor Ronald L. Carter
L27 April 241 Semiconductor Device Modeling & Characterization Lecture 27 Professor Ronald L. Carter Spring 2001.
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter
EE5342 – Semiconductor Device Modeling and Characterization Lecture 23 April 12, 2010 Professor Ronald L. Carter
L26 April 261 EE5342 – Semiconductor Device Modeling and Characterization Lecture 26 - Spring 2005 Professor Ronald L. Carter
Field Effect Transistors
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 16 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2010
Sedr42021_0434.jpg Figure 4.34 Conceptual circuit utilized to study the operation of the MOSFET as a small-signal amplifier.
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Reading: Finish Chapter 17,
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
Recall Last Lecture The MOSFET has only one current, ID
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Last Lecture – MOS Transistor Review (Chap. #3)
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 27 - Fall 2003
Professor Ronald L. Carter
Lecture 20 OUTLINE The MOSFET (cont’d)
EE 5340 Semiconductor Device Theory Lecture 23 - Fall 2003
Lecture 20 OUTLINE The MOSFET (cont’d)
Professor Ronald L. Carter
Professor Ronald L. Carter
Semiconductor Device Modeling & Characterization Lecture 19
EE 2303/001 - Electronics I Summer 2001 Lecture 15
Semiconductor Device Modeling & Characterization Lecture 21
Semiconductor Device Modeling & Characterization Lecture 20
EE 5340 Semiconductor Device Theory Lecture 29 - Fall 2010
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2003
Semiconductor Device Modeling & Characterization Lecture 23
Presentation transcript:

Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ Semiconductor Device Modeling and Characterization EE5342, Lecture 26 Spring 2003 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ L26 17April03

n-channel enhancement MOSFET in ohmic region 0< VT< VG e- channel ele + implant ion Channel VS = 0 0< VD< VDS,sat EOx,x> 0 n+ e-e- e- e- e- + + + + + + + + + + + + n+ Depl Reg p-substrate Acceptors VB < 0 L26 17April03

Fully biased n- channel VT calc L26 17April03

Values for fms with silicon gate L26 17April03

Q’d,max and xd,max for biased MOS capacitor Fig 8.11** |Q’d,max|/q (cm-2) xd,max (microns) L26 17April03

I-V relation for n-MOS ohmic ID non-physical ID,sat saturated VDS,sat L26 17April03

MOSFET equivalent circuit elements Fig 10.51* L26 17April03

MOS small-signal equivalent circuit Fig 10.52* L26 17April03

MOS channel- length modulation Fig 11.5* L26 17April03

Analysis of channel length modulation L26 17April03

Channel length mod- ulated drain char Fig 11.6* L26 17April03

Associating the output conductance ID ID,sat VDS,sat VDS L26 17April03

SPICE mosfet Model Instance CARM*, Ch. 4, p. 290 L = Ch. L. [m] W = Ch. W. [m] AD = Drain A [m2] AS = Source A[m2] NRD, NRS = D and S diff in squares M = device multiplier L26 17April03

SPICE mosfet model levels Level 1 is the Schichman-Hodges model Level 2 is a geometry-based, analytical model Level 3 is a semi-empirical, short-channel model Level 4 is the BSIM1 model Level 5 is the BSIM2 model, etc. L26 17April03

SPICE Parameters Level 1 - 3 (Static) L26 17April03

SPICE Parameters Level 1 - 3 (Static) * 0 = aluminum gate, 1 = silicon gate opposite substrate type, 2 = silicon gate same as substrate. L26 17April03

SPICE Parameters Level 1 - 3 (Q & N) L26 17April03

Level 1 Static Const. For Device Equations Vfb = -TPG*EG/2 -Vt*ln(NSUB/ni) - q*NSS*TOX/eOx VTO = as given, or = Vfb + PHI + GAMMA*sqrt(PHI) KP = as given, or = UO*eOx/TOX CAPS are spice pars., technological constants are lower case L26 17April03

Level 1 Static Const. For Device Equations b = KP*[W/(L-2*LD)] = 2*K, K not spice GAMMA = as given, or = TOX*sqrt(2*eSi*q*NSUB)/eOx 2*phiP = PHI = as given, or = 2*Vt*ln(NSUB/ni) ISD = as given, or = JS*AD ISS = as given, or = JS*AS L26 17April03

Level 1 Static Device Equations vgs < VTH, ids = 0 VTH < vds + VTH < vgs, id = KP/2*[W/(L-2*LD)]*[vgs-VTH-vds/2] *vds*(1 + LAMBDA*vds) VTH < vgs < vds + VTH, id = KP*[W/(L-2*LD)]*(vgs - VTH)^2 *(1 + LAMBDA*vds) L26 17April03

References CARM = Circuit Analysis Reference Manual, MicroSim Corporation, Irvine, CA, 1995. M&A = Semiconductor Device Modeling with SPICE, 2nd ed., by Paolo Antognetti and Giuseppe Massobrio, McGraw-Hill, New York, 1993. M&K = Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986. Semiconductor Physics and Devices, by Donald A. Neamen, Irwin, Chicago, 1997 L26 17April03