Replacing Boron with Gallium

Slides:



Advertisements
Similar presentations
FABRICATION PROCESSES
Advertisements

CHAPTER 8: THERMAL PROCESS (continued). Diffusion Process The process of materials move from high concentration regions to low concentration regions,
P. Fernández-Martínez – Optimized LGAD Periphery25 th RD50 Workshop, CERN Nov Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
Detectors for Ionised (-ing) Particles. Outline Introduction Radioactivity Particle interaction with matter Ionised particle detectors Assignments- Simulation.
Alternative technologies for Low Resistance Strip Sensors (LowR) at CNM CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) M. Ullán, V. Benítez, J. Montserrat,
Microelectronics Processing
For the exclusive use of adopters of the book Introduction to Microelectronic Fabrication, Second Edition by Richard C. Jaeger. ISBN © 2002.
MSE-630 Dopant Diffusion Topics: Doping methods Resistivity and Resistivity/square Dopant Diffusion Calculations -Gaussian solutions -Error function solutions.
M.H.Nemati Sabanci University
Chapter 8 Ion Implantation Instructor: Prof. Masoud Agah
ECE/ChE 4752: Microelectronics Processing Laboratory
Ion Implantation Topics: Deposition methods Implant
Section 6: Ion Implantation
Chapter 8 Ion Implantation
Fabrication of Active Matrix (STEM) Detectors
Chris A. Mack, Fundamental Principles of Optical Lithography, (c) Figure 1.1 Diagram of a simple subtractive patterning process.
IC Process Integration
Post Anneal Solid State Regrowth
Ion Implantation and Ion Beam Analysis of Silicon Carbide Zsolt ZOLNAI MTA MFA Research Institute for Technical Physics and Materials Science Budapest,
SEMINAR PRESENTATION ON IC FABRICATION PROCESS
SILICON DETECTORS PART I Characteristics on semiconductors.
Updates of Iowa State University S. Dumpala, S. Broderick and K. Rajan Oct-2, 2013.
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #3. Diffusion  Introduction  Diffusion Process  Diffusion Mechanisms  Why Diffusion?  Diffusion Technology.
SUPREM Simulation ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May March 18, 2004.
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #4. Ion Implantation  Introduction  Ion Implantation Process  Advantages Compared to Diffusion  Disadvantages.
Application of Silicon-Germanium in the Fabrication of Ultra-shallow Extension Junctions of Sub-100 nm PMOSFETs P. Ranade, H. Takeuchi, W.-H. Lee, V. Subramanian,
Spencer/Ghausi, Introduction to Electronic Circuit Design, 1e, ©2003, Pearson Education, Inc. Chapter 3, slide 1 Introduction to Electronic Circuit Design.
IC Processing. Initial Steps: Forming an active region Si 3 N 4 is etched away using an F-plasma: Si3dN4 + 12F → 3SiF 4 + 2N 2 Or removed in hot.
25th RD50 Workshop (Bucharest) June 13th, Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona IMB-CNM, Barcelona (Spain)
Experience with 50um thick epi LGAD
Ion Beam Analysis of the Composition and Structure of Thin Films
Status of CNM RD50 LGAD Project27th RD50 Workshop, CERN 2-4 Dec Centro Nacional del MicroelectrónicaInstituto de Microelectrónica de Barcelona Status.
Consequences of Implanting and Surface Mixing During Si and SiO 2 Plasma Etching* Mingmei Wang 1 and Mark J. Kushner 2 1 Iowa State University, Ames, IA.
Side ViewTop View Beginning from a silicon wafer.
IFE Ion Threat Spectra Effects Upon Chamber Wall Materials G E. Lucas, N. Walker UC Santa Barbara.
P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de.
© 2004 Dieter Ast, Edwin Kan This material has been edited for class presentation. Ion Implantation: The most controlled way to introduce dopants into.
ATOMIC-SCALE THEORY OF RADIATION-INDUCED PHENOMENA Sokrates T. Pantelides Department of Physics and Astronomy, Vanderbilt University, Nashville, TN and.
G. PellegriniInstituto de Microelectrónica de Barcelona Status of LGAD RD50 projects at CNM28th RD50 Workshop (Torino) 1 Status of LGAD RD50 projects at.
Boron and Phosphorus Implantation Induced Electrically Active Defects in p-type Silicon Jayantha Senawiratne 1,a, Jeffery S. Cites 1, James G. Couillard.
KUKUM – SHRDC INSEP Training Program 2006 School of Microelectronic Engineering Lecture V Thermal Processes.
Doping. 고려대학교 Center for MNB Sensor Technology 166.
Ion Implantation CEC, Inha University Chi-Ok Hwang.
CHAPTER 5 ION IMPLANTATION In ion implantation, ionized impurity atoms are accelerated through an electrostatic field and strike the surface of the wafer.
Scaling
Solid State Devices EE 3311 SMU
Jari Koskinen, Sami Franssila
Fabrication Process terms
Capturing Ion-Soild Interactions with MOS structures
Simplified process flow for bonding interface characterization
Microfabrication Home 3 exercise Return by Feb 5th, 22 o’clock
Microfabrication Home exercise 1
The ATLAS Zero Degree Calorimeter Brookhaven National Laboratory, USA
Microelectronic Fabrication
Laser-Scribing and Al2O3 Sidewall Passivation of P-Type Sensors
Homogeneity and thermal donors in p-type MCz-Si detector materials
Prof. Jang-Ung Park (박장웅)
Fab. Example: Piezoelectric Force Sensor (1)
List of materials which have been evaporated:
Chapter 8 Ion Implantation
Example Design a B diffusion for a CMOS tub such that s=900/sq, xj=3m, and CB=11015/cc First, we calculate the average conductivity We cannot calculate.
Section 7: Diffusion Jaeger Chapter 4 EE143 – Ali Javey.
Silicon Wafer cm (5’’- 8’’) mm
Fermi Level Dependent Diffusion in Silicon
Lecture #25 OUTLINE Device isolation methods Electrical contacts to Si
Layer Transfer Using Plasma Processing for SMART-Wafer
Silicon Self-Interstitial and Dopant Diffusion
1) Wafer Cleaning Oxidizing – Field Oxide (~130 nm)
Basic Planar Process 1. Silicon wafer (substrate) preparation
Presentation transcript:

Replacing Boron with Gallium Maureen K. Petterson Applied Materials N.Y., N.Y., USA Hartmut F.-W. Sadrozinski SCIPP, UC Santa Cruz, Santa Cruz, CA 95064

LGAD: Stack A few wafers had Boron replaced by Gallium Doping p bulk: FZ Np=1e12 cm^-3 n cathode: Phosphorus Nn~1e19 cm^-3 Surface passivation bi-layer (from silicon surface to top: 800 nm thermal oxide + 40 nm deposited alumina). Phosphorous implantation: First: Energy: 70 KeV. Dose: 1E15 atm/cm2; Second: Energy: 150 KeV. Dose: 5E14 atm/cm2 Post P implant anneal: 1000 Celsius degrees for 44 min A few wafers had Boron replaced by Gallium C-V on Ga implanted structures reveal the absence of the gain-layer Maureen Petterson performed simulations with SRIM 2013 using two implantation energies (including 400 nm thermal oxide) Original Gallium implantation: Energy: 60 KeV. Dose: 1.4E13 atm/cm2 Alternative Gallium Implantation: Energy: 1500 KeV. Dose: 1.4E13 atm/cm2

60keV Ga into Si: Cascades A few selected events shown SRIM 2013: Stopping Ranges of Ions in Matter Damage Calculation: Full Cascades

Ga into Si/SiO2: Ion Distribution 60keV Ga into Si Mean ≈ 0.05µm Max ≈ 0.1µm 60keV Ga into SiO2 Mean ≈ 0.04µm Max ≈ 0.08µm 1500keV Ga into Si Mean ≈ 1µm Max ≈ 1.4µm

Ga into LGAD: Ion Distribution Ion Penetration: 60keV Ga into SiO2 Max Depth ≈ 0.1µm i.e. all end up within SiO2 Ion Penetration: 1500keV Ga into SiO2/Si Max Depth ≈ 2 µm i.e. Large fraction ends up within Si

Diffusion Constant D for Si/SiO2 Annealing of B/Ga in Si/SiO2 Diffusion Constant D for Si/SiO2 In Si, 1000oC: D(B,Si)) ≈ D(Ga,Si) Si vs.SiO2: D(B,SiO2) < 3*10-4 D(B,Si) D(Ga,SiO2) < 2*10-4 D(Ga,Si) Ions implanted in SiO2 can’t anneal out! D(1000oC) [cm^2/sec] SiO2 Si B: < 6e-18 2e-14 Ga: < 6e-18 3e-14 1000C -> Ga implantation needs to be made at higher Energy (~1500 keV) SiO2 data from H. G. Francois-Saint-Cyr et al. JOURNAL OF APPLIED PHYSICS, VOLUME 94, No 12 15 DEC. 2003 -> Doping Concentration Test structures need to include the entire stack (SiO2 & Si)

Specific Test Structure. SRP, SIMS, XPS Field Plate N-Well L1 P-Stop, C-Stop Well L2 P-Well (P Multiplication) L3 JTE L4 N-Well L4 + L2 N-Well over P-Well L4 + L3 N-Well over JTE 2.75 mm 3.65 mm The bevel angle  determins the depth d of probing:  =1 deg d= 3mm*0.017 = 50 µm  =4 deg d= 200 µm + Oxide + Alumina