EX 1: Pb-Sn Eutectic System

Slides:



Advertisements
Similar presentations
Engr 2110 – Chapter 9 Dr. R. R. Lindeke
Advertisements

Phase Diagrams Continued
Microstructures in Eutectic Systems: I
Chapter 9: Phase Diagrams
ECTECTIC 2.PERITECTIC 3.EUTECTOID 1537 Cementite Fe 3 C.
The Iron-Iron Carbide Phase Diagram
Phase Diagrams Chapter 10.
PHASE DIAGRAMS Phase B Phase A • When we combine two elements...
ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g., wt%Cu - wt%Ni),
How to calculate the total amount of  phase (both eutectic and primary)? Fraction of  phase determined by application of the lever rule across the entire.
Chapter 9 Phase Diagrams.
Chapter ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g.,
Chapter 9: Phase Diagrams
ENGR-45_Lec-22_PhaseDia-2.ppt 1 Bruce Mayer, PE Engineering-45: Materials of Engineering Bruce Mayer, PE Licensed Electrical &
1 ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g., wt% Cu.
D AY 11 – I NTERMETALLIC COMPOUNDS AND THE I RON -C ARBON P HASE DIAGRAM.
Chapter ISSUES TO ADDRESS... When we mix two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g.,
Intermetallic Compounds
ME 210 Exam 2 Review Session Dr. Aaron L. Adams, Assistant Professor.
Phase Diagrams And Microstructure
Phase Diagrams melting / production process / alloying (strength, Tm...) heat treatment microstructure material properties system (e.g. Cu-Ni) components.
CHAPTER 10: PHASE DIAGRAMS
The Structure and Dynamics of Solids
CHAPTER 9: PHASE DIAGRAMS
Chapter Lecture 11 Phase Diagrams, Solidification, Phase transformations ME 330 Engineering Materials Solidification Solidification microstructures.
 Austenite - The name given to the FCC crystal structure of iron.  Ferrite - The name given to the BCC crystal structure of iron that can occur.
Fe-Carbon Phase Diagram
Phase Diagram Fe3C.
ME 330 Engineering Materials
Chapter ISSUES TO ADDRESS... When we combine two elements... what is the resulting equilibrium state? In particular, if we specify the composition.
Chapter 10: Phase Transformations
Phase Equilibrium Engr 2110 – Chapter 9 Dr. R. R. Lindeke.
Chapter ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g.,
Chapter ISSUES TO ADDRESS... When we combine two __________... what is the resulting _____________state? In particular, if we specify the.
Metallic Materials-Phase Diagrams
Part 6 Chemistry Engineering Department 23/10/2013
PHASE DIAGRAMS ISSUES TO ADDRESS... • When we combine two elements...
Vadodara Institute of Engineering
Materials Engineering
The Iron-Iron Carbide Phase Diagram
The Iron–Iron Carbide (Fe–Fe3C) Phase Diagram
Material Science and Metallurgy
Chapter 10: Phase Transformations
Phase Diagrams–Equilibrium Microstructural Development
Chapter 9: Phase Diagrams
Chapter 9: Phase Diagrams
Chapter 11: Phase Diagrams
Introduction to Materials Science and Engineering
Visit for more Learning Resources
CHAPTER 9: Definitions A. Solid Solution
IRON-CARBON (Fe-C) PHASE DIAGRAM
AHMEDABAD INSTITUTE OF TECHNOLOGY
Phase Diagrams Binary Eutectoid Systems Iron-Iron-Carbide Phase Diagram Steels and Cast Iron Weeks
Introduction to Materials Science and Engineering
Fully Miscible Solution
HYPOEUTECTIC & HYPEREUTECTIC
CHAPTER 9: PHASE DIAGRAMS
EX: Pb-Sn EUTECTIC SYSTEM (1)
Chapter 10: Phase Diagrams
Cast Iron Ferrous alloys with > 2.1 wt% C
2/16/2019 9:54 PM Chapter 9 Phase Diagrams Dr. Mohammad Abuhaiba, PE.
Single solid phase binary alloy -1
EX: Pb-Sn EUTECTIC SYSTEM (1)
Eutectic Type Phase Diagrams
HYPOEUTECTIC & HYPEREUTECTIC
Chapter 10: Phase Diagrams
Iron – Iron Carbide Phase Diagram
IE-114 Materials Science and General Chemistry Lecture-10
CHAPTER 9: PHASE DIAGRAMS
Presentation transcript:

EX 1: Pb-Sn Eutectic System • For a 40 wt% Sn-60 wt% Pb alloy at 150ºC, determine: -- the phases present Pb-Sn system Answer: a + b L + a b 200 T(ºC) 18.3 C, wt% Sn 20 60 80 100 300 L (liquid) 183ºC 61.9 97.8 -- the phase compositions Answer: Ca = 11 wt% Sn Cb = 99 wt% Sn -- the relative amount of each phase Answer: 150 R S 11 C 40 C0 99 C W  = C - C0 C - C 99 - 40 99 - 11 59 88 = 0.67 S R+S W  = C0 - C C - C R R+S 29 88 = 0.33 40 - 11 99 - 11 Adapted from Fig. 9.8, Callister & Rethwisch 8e.

EX 2: Pb-Sn Eutectic System • For a 40 wt% Sn-60 wt% Pb alloy at 220ºC, determine: -- the phases present: Pb-Sn system Answer: a + L L + b a 200 T(ºC) C, wt% Sn 20 60 80 100 300 L (liquid) 183ºC -- the phase compositions Answer: Ca = 17 wt% Sn CL = 46 wt% Sn -- the relative amount of each phase 220 17 C R 40 C0 S 46 CL Answer: W a = CL - C0 CL - C 46 - 40 46 - 17 6 29 = 0.21 Adapted from Fig. 9.8, Callister & Rethwisch 8e. WL = C0 - C CL - C 23 29 = 0.79

Microstructural Developments in Eutectic Systems I • For alloys for which C0 < 2 wt% Sn (compositions ranging between pure component and the max sol at room temp) • Result: at room temperature -- polycrystalline with grains of a phase having composition C0 L + a 200 T(ºC) C , wt% Sn 10 2 20 C0 300 100 30 b 400 (room T solubility limit) TE (Pb-Sn System) L: C0 wt% Sn a L a: C0 wt% Sn Adapted from Fig. 9.11, Callister & Rethwisch 8e.

Microstructural Developments in Eutectic Systems II L: C0 wt% Sn • For alloys for which 2 wt% Sn < C0 < 18.3 wt% Sn Room tem solubility and max solid solubility at Te • Result: at temperatures in a + b range -- polycrystalline with a grains and small b-phase particles Pb-Sn system L + a 200 T(ºC) C , wt% Sn 10 18.3 20 C0 300 100 30 b 400 (sol. limit at TE) TE 2 (sol. limit at T room ) L a a: C0 wt% Sn a b Adapted from Fig. 9.12, Callister & Rethwisch 8e.

Microstructural Developments in Eutectic Systems III • For alloy of composition C0 = CE • Result: Eutectic microstructure (lamellar structure) -- alternating layers (lamellae) of a and b phases. Adapted from Fig. 9.14, Callister & Rethwisch 8e. 160 m Micrograph of Pb-Sn eutectic microstructure Pb-Sn system L a 200 T(ºC) C, wt% Sn 20 60 80 100 300 L a b + 183ºC 40 TE L: C0 wt% Sn CE 61.9 18.3 : 18.3 wt%Sn 97.8 : 97.8 wt% Sn Adapted from Fig. 9.13, Callister & Rethwisch 8e.

Hypoeutectic & Hypereutectic 300 L T(ºC) Adapted from Fig. 9.8, Callister & Rethwisch 8e. (Fig. 10.8 adapted from Binary Phase Diagrams, 2nd ed., Vol. 3, T.B. Massalski (Editor-in-Chief), ASM International, Materials Park, OH, 1990.) L + a a b 200 L + b (Pb-Sn TE System) a + b 100 (Figs. 9.14 and 9.17 from Metals Handbook, 9th ed., Vol. 9, Metallography and Microstructures, American Society for Metals, Materials Park, OH, 1985.) 175 mm a hypoeutectic: C0 = 50 wt% Sn Adapted from Fig. 9.17, Callister & Rethwisch 8e. hypereutectic: (illustration only) b Adapted from Fig. 9.17, Callister & Rethwisch 8e. (Illustration only) C, wt% Sn 20 40 60 80 100 eutectic 61.9 eutectic: C0 = 61.9 wt% Sn 160 mm eutectic micro-constituent Adapted from Fig. 9.14, Callister & Rethwisch 8e.

 

Intermetallic Compounds Adapted from Fig. 9.20, Callister & Rethwisch 8e. Mg2Pb Note: intermetallic compound exists as a line on the diagram - not an area - because of stoichiometry (i.e. composition of a compound is a fixed value). – 2- melting Tem. 3- solubility of each element in other

Eutectic, Eutectoid, & Peritectic Eutectic - liquid transforms to two solid phases L  +  (For Pb-Sn, 183ºC, 61.9 wt% Sn) cool heat Eutectoid – one solid phase transforms to two other solid phases S2 S1+S3   + Fe3C (For Fe-C, 727ºC, 0.76 wt% C) intermetallic compound - cementite cool heat cool heat Peritectic - liquid and one solid phase transform to a second solid phase S1 + L S2  + L  (For Fe-C, 1493ºC, 0.16 wt% C)

Iron Carbon Phase diagram

Comments 1- BCC, FCC, BCC 2- % is max 6.70 then pure graphite Fe3C cementite Carbon max solubility in Ferrite and austenite and at what temp fe3C exist where (ranges of Tem)? And it is hard and brittle and not equilibrium Eutictoid a = pearlite Proeutictoid a + eutectoid a a (proeutictiod + eutectoid)

Iron-Carbon (Fe-C) Phase Diagram • 2 important Adapted from Fig. 9.24, Callister & Rethwisch 8e. Fe3C (cementite) 1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L g (austenite) +L +Fe3C a + d (Fe) C, wt% C 1148ºC T(ºC) 727ºC = T eutectoid points - Eutectic (A): L Þ g + Fe3C A L+Fe3C - Eutectoid (B): g Þ a + Fe3C g Result: Pearlite = alternating layers of a and Fe3C phases 120 mm (Adapted from Fig. 9.27, Callister & Rethwisch 8e.) 0.76 B Fe3C (cementite-hard) a (ferrite-soft) 4.30

Ferrous alloys : based on C content 1- Iron < .008 wt% C : ferrite phase at room Tepm 2- Steel : .008 – 2.14 wt% C : Fe3C + a 3- Cast iron : 2.14 -6.70 wt%

Hypoeutectoid Steel T(ºC) d L +L g (austenite) Fe3C (cementite) a 1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L g (austenite) +L + Fe3C a L+Fe3C d (Fe) C, wt% C 1148ºC T(ºC) 727ºC (Fe-C System) C0 0.76 g g Adapted from Figs. 9.24 and 9.29,Callister & Rethwisch 8e. (Fig. 9.24 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.) g a a pearlite Adapted from Fig. 9.30, Callister & Rethwisch 8e. proeutectoid ferrite pearlite 100 mm Hypoeutectoid steel

Hypoeutectoid Steel T(ºC) d L +L g (austenite) Fe3C (cementite) 1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L g (austenite) +L + Fe3C a L+Fe3C d (Fe) C, wt% C 1148ºC T(ºC) 727ºC (Fe-C System) C0 0.76 g a Adapted from Figs. 9.24 and 9.29,Callister & Rethwisch 8e. (Fig. 9.24 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.) Wa = s/(r + s) Wg =(1 - Wa) s r a pearlite R S Wpearlite = Wg Wa’ = S/(R + S) W =(1 – Wa’) Fe3C Adapted from Fig. 9.30, Callister & Rethwisch 8e. proeutectoid ferrite pearlite 100 mm Hypoeutectoid steel

Hypereutectoid Steel T(ºC) d L +L g g (austenite) Fe3C (cementite) g g 1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L g (austenite) +L +Fe3C a L+Fe3C d (Fe) C, wt%C 1148ºC T(ºC) (Fe-C System) g g Adapted from Figs. 9.24 and 9.32,Callister & Rethwisch 8e. (Fig. 9.24 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.) Fe3C g pearlite C0 0.76 Adapted from Fig. 9.33, Callister & Rethwisch 8e. proeutectoid Fe3C 60 mm Hypereutectoid steel pearlite

Hypereutectoid Steel Fe3C (cementite) L g (austenite) +L a d T(ºC) g x 1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L g (austenite) +L +Fe3C a L+Fe3C d (Fe) C, wt%C 1148ºC T(ºC) (Fe-C System) Fe3C g Adapted from Figs. 9.24 and 9.32,Callister & Rethwisch 8e. (Fig. 9.24 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.) W =(1-Wg) Wg =x/(v + x) Fe3C x v pearlite V X C0 0.76 Wpearlite = Wg Wa = X/(V + X) W =(1 - Wa) Fe3C’ Adapted from Fig. 9.33, Callister & Rethwisch 8e. proeutectoid Fe3C 60 mm Hypereutectoid steel pearlite

Hypo and hyper – lever rule

Example Problem For a 99.6 wt% Fe-0.40 wt% C steel at a temperature just below the eutectoid, determine the following: The compositions of Fe3C and ferrite (). The amount of cementite (in grams) that forms in 100 g of steel. The amounts of pearlite and proeutectoid ferrite () in the 100 g.

Solution to Example Problem a) Using the RS tie line just below the eutectoid Ca = 0.022 wt% C CFe3C = 6.70 wt% C Using the lever rule with the tie line shown Fe3C (cementite) 1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L g (austenite) +L + Fe3C a L+Fe3C d C , wt% C 1148ºC T(ºC) 727ºC C0 R S CFe C 3 C Amount of Fe3C in 100 g = (100 g)WFe3C = (100 g)(0.057) = 5.7 g

Solution to Example Problem (cont.) c) Using the VX tie line just above the eutectoid and realizing that C0 = 0.40 wt% C Ca = 0.022 wt% C Cpearlite = C = 0.76 wt% C Fe3C (cementite) 1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L g (austenite) +L + Fe3C a L+Fe3C d C, wt% C 1148ºC T(ºC) 727ºC C0 V X C C Amount of pearlite in 100 g = (100 g)Wpearlite = (100 g)(0.512) = 51.2 g