Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 11: Phase Diagrams

Similar presentations


Presentation on theme: "Chapter 11: Phase Diagrams"— Presentation transcript:

1 Chapter 11: Phase Diagrams
ISSUES TO ADDRESS... • When we combine two elements... what is the resulting equilibrium state? • In particular, if we specify... -- the composition (e.g., wt% Cu - wt% Ni), and -- the temperature (T ) then... How many phases form? What is the composition of each phase? What is the amount of each phase? Phase B Phase A Nickel atom Copper atom

2 Phase Equilibria: Solubility Limit
• Solution – solid, liquid, or gas solutions, single phase • Mixture – more than one phase • Solubility Limit: Maximum concentration for which only a single phase solution exists. Sugar/Water Phase Diagram Sugar Temperature (°C) 20 40 60 80 100 C = Composition (wt% sugar) L (liquid solution i.e., syrup) Solubility Limit (liquid) + S (solid sugar) 4 6 8 10 Water Adapted from Fig. 11.1, Callister & Rethwisch 9e. Question: What is the solubility limit for sugar in water at 20°C? 65 Answer: 65 wt% sugar. At 20°C, if C < 65 wt% sugar: syrup At 20°C, if C > 65 wt% sugar: syrup + sugar

3 Components and Phases • Components: • Phases: β (lighter phase) α
The elements or compounds which are present in the alloy (e.g., Al and Cu) • Phases: The physically and chemically distinct material regions that form (e.g., α and β). Aluminum- Copper Alloy β (lighter phase) α (darker phase) Adapted from chapter-opening photograph, Chapter 9, Callister, Materials Science & Engineering: An Introduction, 3e.

4 Phase Diagrams • Indicate phases as a function of T, C, and P.
• For this course: - binary systems: just 2 components. - independent variables: T and C (P = 1 atm is almost always used). wt% Ni 20 40 60 80 100 1000 1100 1200 1300 1400 1500 1600 T(°C) L (liquid) α (FCC solid solution) L + liquidus solidus • 2 phases: Phase Diagram for Cu-Ni system L (liquid) α (FCC solid solution) • 3 different phase fields: L L + α α Fig. 11.3(a), Callister & Rethwisch 9e. (Adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash, Editor, Reprinted by permission of ASM International, Materials Park, OH.)

5 Ex: Cooling of a Cu-Ni Alloy
• Phase diagram: Cu-Ni system. T(°C) L (liquid) L: 35 wt%Ni Cu-Ni system • Consider microstuctural changes that accompany the cooling of a C0 = 35 wt% Ni alloy α α: 46 wt% Ni L: 35 wt% Ni 130 A + L B 46 35 C 43 32 α: 43 wt% Ni L: 32 wt% Ni D 24 36 α L: 24 wt% Ni α: 36 wt% Ni + 120 L E α (solid) α: 35 wt% Ni 110 20 3 35 4 5 C0 wt% Ni Adapted from Fig. 11.4, Callister & Rethwisch 9e.

6 Binary-Eutectic Systems
has a special composition with a min. melting T. 2 components Cu-Ag system T(°C) Ex.: Cu-Ag system 1200 • 3 single phase regions (L, α, β) L (liquid) 1000 α L + α • Limited solubility: α: mostly Cu β: mostly Ag L + β 800 779°C β TE 8.0 71.9 91.2 600 • TE : No liquid below TE α + β : Composition at temperature TE • CE 400 200 20 40 60 CE 80 100 • Eutectic reaction L(CE) α(CαE) + β(CβE) C, wt% Ag Fig. 11.6, Callister & Rethwisch 9e [Adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), Reprinted by permission of ASM International, Materials Park, OH.]. cooling heating

7 EX 2: Pb-Sn Eutectic System
• For a 40 wt% Sn-60 wt% Pb alloy at 220°C, determine: -- the phases present: Pb-Sn system Answer: α + L L + β α 200 T(°C) C, wt% Sn 20 60 80 100 300 L (liquid) 183°C -- the phase compositions Answer: Cα = 17 wt% Sn CL = 46 wt% Sn -- the relative amount of each phase 220 17 R 40 C0 S 46 CL Answer: W α = CL - C0 CL - Cα 6 29 = 0.21 Fig. 11.7, Callister & Rethwisch 9e. [Adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 3, T. B. Massalski (Editor-in-Chief), Reprinted by permission of ASM International, Materials Park, OH.] WL = C0 - Cα CL - Cα 23 29 = 0.79

8 Microstructural Developments in Eutectic Systems II
L: C0 wt% Sn • For alloys for which 2 wt% Sn < C0 < 18.3 wt% Sn • Result: at temperatures in α + β range -- polycrystalline with α grains and small β-phase particles Pb-Sn system L + α 200 T(°C) C , wt% Sn 10 18.3 20 C0 300 100 30 β 400 (sol. limit at TE) TE 2 (sol. limit at T room ) L α α: C0 wt% Sn α β Fig , Callister & Rethwisch 9e.

9 Microstructural Developments in Eutectic Systems III
• For alloy of composition C0 = CE • Result: Eutectic microstructure (lamellar structure) -- alternating layers (lamellae) of α and β phases. Fig , Callister & Rethwisch 9e. (From Metals Handbook, 9th edition, Vol. 9, Metallography and Microstructures, 1985. Reproduced by permission of ASM International, Materials Park, OH.) 160 μm Micrograph of Pb-Sn eutectic microstructure Pb-Sn system Lβ αβ 200 T(°C) C, wt% Sn 20 60 80 100 300 L α β + 183°C 40 TE L: C0 wt% Sn CE 61.9 18.3 α: 18.3 wt%Sn 97.8 β: 97.8 wt% Sn Fig , Callister & Rethwisch 9e.

10 Microstructural Developments in Eutectic Systems IV
• For alloys for which 18.3 wt% Sn < C0 < 61.9 wt% Sn • Result: α phase particles and a eutectic microconstituent WL = (1- W α ) = 0.50 = 18.3 wt% Sn CL = 61.9 wt% Sn S R + = • Just above TE : Fig , Callister & Rethwisch 9e. Pb-Sn system L + β 200 T(°C) C, wt% Sn 20 60 80 100 300 α 40 TE L: C0 wt% Sn L α L α 18.3 61.9 S R 97.8 S R primary α eutectic β • Just below TE : C α = 18.3 wt% Sn β = 97.8 wt% Sn S R + W = = 0.73 = 0.27

11 Eutectic, Eutectoid, & Peritectic
Eutectic - liquid transforms to two solid phases L α + β (For Pb-Sn, 183°C, 61.9 wt% Sn) cool heat Eutectoid – one solid phase transforms to two other solid phases S S1+S3 γ α + Fe3C (For Fe-C, 727°C, 0.76 wt% C) intermetallic compound - cementite cool heat cool heat Peritectic - liquid and one solid phase transform to a second solid phase S1 + L S2 δ + L γ (For Fe-C, 1493°C, 0.16 wt% C)

12 Eutectoid & Peritectic
Peritectic transformation γ + L δ Cu-Zn Phase diagram Eutectoid transformation δ γ + e Fig , Callister & Rethwisch 9e. [Adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 2, T. B. Massalski (Editor-in-Chief), Reprinted by permission of ASM International, Materials Park, OH.]

13 Phase Rule Phase Rule: 상태조건 T,P,C와 미세조직상과 관련
미세조직형성을 알기 위해서 상태도를 알아야 하며, 이를 위해 상률을 알아야 한다 F = C – P + 2 (T & P) 1기압: F = C – P + 1

14 fig_09_24 fig_09_24

15 Iron-Carbon (Fe-C) Phase Diagram
• 2 important Fig , Callister & Rethwisch 9e. [Adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), Reprinted by permission of ASM International, Materials Park, OH.] Fe3C (cementite) 1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L γ (austenite) +L +Fe3C α + δ (Fe) C, wt% C 1148°C T(°C) 727°C = T eutectoid points - Eutectic (A): L Þ γ + Fe3C A - Eutectoid (B): γ Þ α + Fe3C L+Fe3C γ Result: Pearlite = alternating layers of α and Fe3C phases 120 μm Fig , Callister & Rethwisch 9e. (From Metals Handbook, Vol. 9, 9th ed., Metallography and Microstructures, 1985. Reproduced by permission of ASM International, Materials Park, OH.) 0.76 B Fe3C (cementite-hard) α (ferrite-soft) 4.30

16 Hypoeutectoid Steel a T(°C) δ L +L γ (austenite) Fe3C (cementite) α
1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L γ (austenite) +L + Fe3C α L+Fe3C δ (Fe) C, wt% C 1148°C T(°C) a 727°C (Fe-C System) C0 0.76 γ γ Adapted from Figs and 11.28, Callister & Rethwisch 9e. [Figure 9.24 adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), Reprinted by permission of ASM International, Materials Park, OH.] γ α α pearlite Adapted from Fig , Callister & Rethwisch 9e. (Photomicrograph courtesy of Republic Steel Corporation.) proeutectoid ferrite pearlite 100 μm Hypoeutectoid steel

17 Hypoeutectoid Steel T(°C) δ L +L γ (austenite) Fe3C (cementite)
1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L γ (austenite) +L + Fe3C α L+Fe3C δ (Fe) C, wt% C 1148°C T(°C) 727°C (Fe-C System) C0 0.76 γ α Adapted from Figs and 11.28, Callister & Rethwisch 9e. [Figure 9.24 adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), Reprinted by permission of ASM International, Materials Park, OH.] Wα = s/(r + s) Wγ =(1 - Wα) s r α pearlite R S Wpearlite = Wγ Wα’ = S/(R + S) W =(1 – Wα’) Fe3C Adapted from Fig , Callister & Rethwisch 9e. (Photomicrograph courtesy of Republic Steel Corporation.) proeutectoid ferrite pearlite 100 μm Hypoeutectoid steel

18 Hypereutectoid Steel T(°C) δ L +L γ γ (austenite) Fe3C (cementite) γ γ
1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L γ (austenite) +L + Fe3C α L+Fe3C δ (Fe) C, wt% C 1148°C T(°C) 727°C (Fe-C System) C0 γ γ Adapted from Figs and 11.31, Callister & Rethwisch 9e. [Figure 9.24 adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), Reprinted by permission of ASM International, Materials Park, OH.] Fe3C γ pearlite C0 0.76 Adapted from Fig , Callister & Rethwisch 9e. (Copyright 1971 by United States Steel Corporation.) proeutectoid Fe3C 60 μm Hypereutectoid steel pearlite

19 Hypereutectoid Steel Fe3C (cementite) L γ (austenite) +L α δ T(°C) γ x
1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L γ (austenite) +L + Fe3C α L+Fe3C δ (Fe) C, wt% C 1148°C T(°C) 727°C (Fe-C System) C0 Fe3C γ Adapted from Figs and 11.31, Callister & Rethwisch 9e. [Figure 9.24 adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), Reprinted by permission of ASM International, Materials Park, OH.] W =(1-Wγ) Wγ =x/(v + x) Fe3C x v pearlite V X C0 0.76 Wpearlite = Wγ Wα = X/(V + X) W =(1 - Wα) Fe3C’ Adapted from Fig , Callister & Rethwisch 9e. (Copyright 1971 by United States Steel Corporation.) proeutectoid Fe3C 60 μm Hypereutectoid steel pearlite

20 Alloying with Other Elements
• Teutectoid changes: Fig , Callister & Rethwisch 9e. (From Edgar C. Bain, Functions of the Alloying Elements in Steel, Reproduced by permission of ASM International, Materials Park, OH.) T Eutectoid (ºC) wt. % of alloying elements Ti Ni Mo Si W Cr Mn • Ceutectoid changes: Fig ,Callister & Rethwisch 9e. (From Edgar C. Bain, Functions of the Alloying Elements in Steel, Reproduced by permission of ASM International, Materials Park, OH.) wt. % of alloying elements C eutectoid (wt% C) Ni Ti Cr Si Mn W Mo

21 Summary • Phase diagrams are useful tools to determine:
-- the number and types of phases present, -- the composition of each phase, -- and the weight fraction of each phase given the temperature and composition of the system. • The microstructure of an alloy depends on -- its composition, and -- whether or not cooling rate allows for maintenance of equilibrium. • Important phase diagram phase transformations include eutectic, eutectoid, and peritectic.


Download ppt "Chapter 11: Phase Diagrams"

Similar presentations


Ads by Google