Welcome to Equatorial-PRIMO

Slides:



Advertisements
Similar presentations
Seismology Forum Meeting 2014:
Advertisements

Introduction to the Ionosphere
The day-to-day longitudinal variability of the global ionospheric density distribution: Preliminary results E.E. Pacheco and E. Yizengaw Institute for.
The NCAR TIE-GCM: Model Description, Development, and Validation
MURI,2008 Electric Field Variability and Impact on the Thermosphere Yue Deng 1,2, Astrid Maute 1, Arthur D. Richmond 1 and Ray G. Roble 1 1.HAO National.
Ionosphere Climate Studied by F3 / COSMIC Constellation C. H. Liu Academia Sinica In Collaboration with Tulasi Ram, C.H. Lin and S.Y. Su.
The primary mechanism through which energy and momentum are transferred from the lower atmosphere to the upper atmosphere and ionosphere is through the.
Sudden Stratospheric Warming Effects M.V. Klimenko, V.V. Klimenko, F.S. Bessarab, Yu.N. Koren’kov WD Pushkov IZMIRAN, RAS, Kaliningrad, Russia, WD Pushkov.
Plasma layers in the terrestrial, martian and venusian ionospheres: Their origins and physical characteristics Martin Patzold (University of Cologne) and.
Spatio-temporal structures of equatorial F-region plasma irregularities & Geomagnetic Regular Daily Variations (Sq, Solar quiet) as seen in space and at.
LISN Model/Data Inversion to Determine the Drivers of the Low-Latitude Ionosphere (Comparisons with JRO ISR Drift Measurements) Vince Eccles (Modeling)
Modelling the Thermosphere-Ionosphere Response to Space Weather Effects: the Problem with the Inputs Alan Aylward, George Millward, Alex Lotinga Atmospheric.
Abstract Since the ionosphere is the interface between the Earth and space environments and impacts radio, television and satellite communication, it is.
Ionospheric Electric Field Variations during Geomagnetic Storms Simulated using CMIT W. Wang 1, A. D. Richmond 1, J. Lei 1, A. G. Burns 1, M. Wiltberger.
The tribulations and exaltations in coupling models of the magnetosphere with ionosphere- thermosphere models Aaron Ridley Department of Atmospheric, Oceanic.
5. Simplified Transport Equations We want to derive two fundamental transport properties, diffusion and viscosity. Unable to handle the 13-moment system.
Importance of the Height Distribution of Joule Heating for Thermospheric Density Arthur D. Richmond and Astrid Maute NCAR High Altitude Observatory.
Geospace Variability through the Solar Cycle John Foster MIT Haystack Observatory.
Julie A. Feldt CEDAR-GEM workshop June 26 th, 2011.
the Ionosphere as a Plasma
Determining the Sharp, Longitudinal Gradients in Equatorial ExB Drift Velocities Associated with the 4-cell, Non-migrating Structures David Anderson and.
J. M. Forbes, E. K. Sutton, R. S. Nerem Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado, USA Sean Bruinsma, CNES.
UTSA Estimating Model Parameters from Ionospheric Reverse Engineering (EMPIRE) G. S. Bust and G. Crowley UTSA S. Datta-Barua ASTRA.
How does the Sun drive the dynamics of Earth’s thermosphere and ionosphere Wenbin Wang, Alan Burns, Liying Qian and Stan Solomon High Altitude Observatory.
Altitude (km) January Global AverageTemperature (K) Pressure (hPa) With O( 3 P) Cooling WACCM-X The Whole Atmosphere Community Climate Model – eXtended.
1 Agenda Topic: Space Weather Modeling and the Whole Atmosphere Model (WAM) Presented By: Rodney Viereck(NWS/NCEP/SWPC) Contributors: Rashid Akmaev (SWPC)
High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University.
How does energy from magnetic storms get transferred from high to low latitudes Anthea Coster, MIT Haystack Observatory How does energy from magnetic storms.
Ionospheric Electrodynamics & Low-Earth Orbiting Satellites (LEOS) J-M Noël, A. Russell, D. Burrell & S. Thorsteinson Royal Military College of Canada.
Neutral Winds in the Upper Atmosphere Qian Wu National Center for Atmospheric Research.
Scott M. Bailey, LWS Workshop March 24, 2004 The Observed Response of the Lower Thermosphere to Solar Energetic Inputs Scott M. Bailey, Erica M. Rodgers,
Ionospheric Research at USU R.W. Schunk, L. Scherliess, J.J. Sojka, D.C. Thompson & L. Zhu Center for Atmospheric & Space Sciences Utah State University.
Effects of the Magnetosphere and Lower Atmosphere on the Ionosphere-Thermosphere System R.W. Schunk, L. Gardner, L. Scherliess, D.C. Thompson, J.J. Sojka.
The Mesoscale Ionospheric Simulation Testbed (MIST) Regional Data Assimilation Model Joseph Comberiate Michael Kelly Ethan Miller June 24, 2013.
Interactive Ion- Neutral Dynamics in the Ionosphere WILLIAM EVONOSKY.
Response of the Earth’s environment to solar radiative forcing
NCAR Advanced Study Program (ASP) Seminar, February 13, Solar Semidiurnal Tide in the Atmosphere Jeff Forbes Department of Aerospace Engineering.
WG3 “Ionospheric Storms” Summary Report
Ionospheric Assimilation Model for Space Weather Monitoring and Forecasting I. T. Lee 1 W. H. Chen 2, T. Matsuo 3,4, C. H. Chang 2,
University of Colorado/CIRES – NOAA/SWPC NADIR MURI, Boulder, CO, October, 2008 Mariangel Fedrizzi, Timothy J. Fuller-Rowell, Tomoko Matsuo Numerical.
Image credit: NASA Response of the Earth’s environment to solar radiative forcing Ingrid Cnossen British Antarctic Survey.
COSMIC Ionospheric measurements Jiuhou Lei NCAR ASP/HAO Research review, Boulder, March 8, 2007.
Characteristics and source of the electron density irregularities in the Earth’s ionosphere Hyosub Kil Johns Hopkins University / Applied Physics Laboratory.
Thermospheric density variations due to space weather Tiera Laitinen, Juho Iipponen, Ilja Honkonen, Max van de Kamp, Ari Viljanen, Pekka Janhunen Finnish.
Energy inputs from Magnetosphere to the Ionosphere/Thermosphere ASP research review Yue Deng April 12 nd, 2007.
Planetary waves in the equatorial mesosphere and ionosphere measurements Lourivaldo Mota Lima (UEPB) Luciana R. Araújo, Maxwelton F. Silva (UEPB) H. Takahashi,
Coupled Thermosphere Ionosphere Plasmasphere Model with self-consistent Electrodynamics (CTIPe) Global thermosphere km, solves momentum, energy,
Impact of midnight thermosphere dynamics on the equatorial ionospheric vertical drifts Tzu-Wei Fang 1,2 R. Akmaev 2, R. Stoneback 3, T. Fuller-Rowell 1,2,
PART I: Local Ionospheric processes, and terrestrial ionospheres
Variations of hydrogen in the thermosphere: nature and causes
CEDAR Frontiers: Daytime Optical Aeronomy Duggirala Pallamraju and Supriya Chakrabarti Center for Space Physics, Boston University &
The Ionosphere and Thermosphere GEM 2013 Student Tutorial
Atmosphere-Ionosphere Wave Coupling as Revealed in Swarm Plasma Densities and Drifts Jeffrey M. Forbes Department of Aerospace Engineering Sciences, University.
GOMOS measurements of O3, NO2, and NO3 compared to model simulations
Disturbance Dynamo Effects in the Low Latitude Ionosphere
Ionospheric Models Levan Lomidze Center for Atmospheric and Space Sciences Utah State University CEDAR-GEM Student Workshop, June.
Thermosphere-Ionosphere Issues for DASI - I:
The ionosphere is much more structured and variable than ever predicted. Solar Driven Model Since 2000, we have seen more, very clear evidence that the.
Prospects for real-time physics-based thermosphere ionosphere models for neutral density specification and forecast Tim Fuller-Rowell, Mariangel Fedrizzi,
Ionosphere, Magnetosphere and Thermosphere Anthea Coster
Mid-latitude Electron Density Variations Under Magnetospheric Substorm Conditions As Determined From Istanbul Dynasonde Observations Aysegul Ceren MORAL,
SPP Colloquium, 16-Jun-2017, Bremen
Astrid Maute, Art Richmond, Ben Foster
Charles Lin1, Jia-Ting Lin1, Loren Chang2, Yang-Yi Sun2
Earth’s Ionosphere Lecture 13
Han-Li Liu, Raymond G. Roble, Arthur D. Richmond, Stanley C
The Upper Atmosphere: Problems in Developing Realistic Models
The Ionosphere Equatorial Anomaly.
Evaluation of IRI-2012 by comparison with JASON-1 TEC and incoherent scatter radar observations during the solar minimum period Eun-Young Ji,
VarSITI Closing Simposium, Sofia, Bulgaria, June 2019
Presentation transcript:

Welcome to Equatorial-PRIMO (Problems Related to Ionospheric Models and Observations) Original PRIMO dealt with mid-latitude comparisons Most theoretical models underestimated the noon-time, Nmax values by a factor of 2 at solar maximum It’s appropriate to start a multi-year, Equatorial-PRIMO with similar goals as the original PRIMO workshops

Transport Processes in the Equatorial Ionosphere

(Problems Related to Ionospheric Models and Observations) Equatorial-PRIMO (Problems Related to Ionospheric Models and Observations) We do not fully understand all the relevant physics of the equatorial ionosphere, so that current models do not completely agree with each other and are not able to accurately reproduce observations. To understand the strengths and the limitations of theoretical, time-dependent, low-latitude ionospheric models in representing observed ionospheric structure and variability under low to moderate solar activity and geomagnetic quiet conditions, in order to better understand the underlying ionospheric physics and develop improved models. The vertical drift and global electric field at equatorial region are calculated through the electrodynamics process which is strongly controlled by the neutral wind velocity, ionospheric conductivity, and geomagnetic field. Comparing the similarities and dissimilarities of inputs and outputs among different models as well as the observations helps us to evaluate the reliability of existing physics.

A set of theoretical ionospheric models require neutral atmospheric densities and temperatures, neutral winds, ExB drift velocities as inputs and calculate and Ion and electron densities as a function of altitude, latitude and local time. Their calculations are not self-consistently. The Utah State University (USU) ”Ionospheric Forecast Model (IFM)” The Space Environment Corporation (SEC) “Low Latitude Ionospheric Specification Model (LLIONS)” The AFRL “Physics Based Model (PBMOD)” The “Global Ionosphere and Plasmasphere (GIP)” model. The NRL “Still Another Model of the Ionosphere 2 (SAMI2)” The other set of ionosphere-thermosphere models are time dependent, three dimensional, non-linear models which solve the fully coupled, thermodynamic, and continuity equations of the neutral gas self-consistently with the ion energy, ion momentum, and ion continuity equations. The NRL “Still Another Model of the Ionosphere 3 (SAMI3)” The Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe) model The NCAR “Thermosphere-Ionosphere-Electrodynamics general circulation model (TIE-GCM)” and “Thermosphere-Ionosphere-Mesosphere-Electrodynamics general circulation model (TIME-GCM)” University of Michigan “Global Ionosphere-Thermosphere Model (GITM)” Integrated Dynamics through Earth’s Atmosphere (IDEA).

(Problems Related to Ionospheric Models and Observations) Equatorial-PRIMO (Problems Related to Ionospheric Models and Observations) 13:30 – 13:35 Introduction of Equatorial-PRIMO Workshop 13:35 – 13:40 Jan Sojka – IFM 13:40 – 13:45 Vince Eccles – LLIONS 13:45 – 13:50 John Retterer – PBMOD 13:50 – 13:55 Tzu-Wei Fang – GIP 13:55 – 14:05 Joe Huba – SAMI2 and SAMI3 14:05 – 14:10 Art Richmond – TIE-GCM 14:10 – 14:15 Geoff Crowley – TIME-GCM 14:15 – 14:20 Aaron Ridley – GITM 14:20 – 14:30 Tim Fuller-Rowell – CTIPe and IDEA 14:30 – 15:30 Round-table Discussion

Self consistent model – TIGCM and GTIM Burnside Factor (the collision frequency between O+-O) in the topside was multiplied by 1.7. But today, the evidence suggests the factor is closer to 1.0. Self consistent model – TIGCM and GTIM [Anderson et al. JGR, 1998]

For self-consistent models, the diurnal variation of vertical drift at magnetic equator in Jicamarca longitude and the longitudinal variation of equatorial vertical drift at 0UT. Height variation of drift at daytime and nighttime. 4 8 12 16 20 50 30 10 -10 -30 -50 model vertical drifts LT (hr) [Scherliess and Fejer, 1999]

The zonal and meridional wind velocity (Lon vs The zonal and meridional wind velocity (Lon vs. ±60° Lat at 0UT) at 120 km (or E region) and 300 km (or F region) used as specified input or generated by the model.

For self-consistent models, the daytime and nighttime Pederson and Hall conductivities (±30° Lat vs. height) in Jicamarca longitude. http://wdc.kugi.kyoto-u.ac.jp/ionocond/sigcal/index.html

The daytime and nighttime electron density distribution (±30° Lat vs The daytime and nighttime electron density distribution (±30° Lat vs. height) at Jicamarca longitude.

(Problems Related to Ionospheric Models and Observations) Equatorial-PRIMO (Problems Related to Ionospheric Models and Observations) (a) Chemical reaction rates, photoionization processes, diffusion coefficients, nighttime ionization? (b) Boundary conditions, numerical techniques, spatial resolution? (1) The zonal and meridional wind velocity (Lon vs. ±60° Lat at 0UT) at 120 km (or E region) and 300 km (or F region) used as specified input or generated by the model. (2) The daytime and nighttime electron density distribution (±30° Lat vs. height) in Jicamarca longitude. (3) For self-consistent models, the daytime and nighttime Pederson and Hall conductivities (±30° Lat vs. height) in Jicamarca longitude. (4) For self-consistent models, the diurnal variation of vertical drift at magnetic equator in Jicamarca longitude and the longitudinal variation of equatorial vertical drift at 0UT. (5) For self-consistent models, the height variation of vertical drifts at magnetic equator in Jicamarca longitude during the daytime and nighttime.