Chapter 7 “Ionic and Metallic Bonding”

Slides:



Advertisements
Similar presentations
Ionic Bonding Chapter 13 Ionic Bonding
Advertisements

Chapter 7 Ionic Bonding.
Chapter 7 Ionic Bonding.
Chapter 15 “Ionic and Metallic Bonding”
MYP Chemistry Ionic Bonding and Ionic Compounds
MYP Chemistry Ionic Bonding and Ionic Compounds International College Spain.
Bonding in Metals OBJECTIVES:
Chapter 7 Ionic and Metallic Bonding
 e-’s responsible for chem props of atoms  in outer energy level  s and p e-’s in outer energy level  Core e-’s – energy levels below.
Chapter 15 Ionic Bonding and Ionic Compounds
Chapter 7 “Ionic and Metallic Bonding”
Ch 7 PowerPoint Notes.
Valence Electrons l The electrons responsible for the chemical properties of atoms are those in the outer energy level. l Valence electrons - The electrons.
Ions and Ionic Compounds l OBJECTIVES: –Determine the number of valence electrons in an atom of a representative element.
Chapter 7 “Ionic and Metallic Bonding”
Chapter 7 “Ionic and Metallic Bonding”
Ionic Bonding …electrons are transferred. Guiding Questions? What is that? How do we figure out what the chemical formula is? What does it mean to be.
Ionic Bonding Section 4.1.
Chapter 7 “Ionic and Metallic Bonding”. Metallic Bonds are… l How metal atoms are held together in the solid. l Metals hold on to their valence electrons.
Chapter 7 Ionic and Metallic Bonding Section 7.1 Ions.
Chapter 15 Ionic Bonding and Ionic Compounds Walla Walla High School Mr. Carlsen.
Chapter 15 Ionic Bonding and Ionic Compounds Valence Electrons l The electrons responsible for the chemical properties of atoms are those in the outer.
Bonding – Relationships between Microscopic Structure and Macroscopic Properties.
Chapter 7 Ionic Bonding Modified from Dr. Cotton’sDr. Cotton’s Presentation.
Chapter 4 Part 1 - Ionic Compounds Electron Review l Valence electrons - electrons in the outer energy level. l Core electrons -those in the energy levels.
Chapter 8 Ionic Bonding Keeping Track of Electrons l The electrons responsible for the chemical properties of atoms are those in the outer energy level.
Bonding Ionic Bonding & Metallic Bonding Keeping Track of Electrons l The electrons responsible for the chemical properties of atoms are those in the.
“Ionic, Covalent and Metallic Bonding”
Chapter 7 “Metallic Bonding” Chemistry Grade 10. Bonding in Metals OBJECTIVES: –Explain the importance of alloys.
IONIC AND METALLIC BONDS Why do bonds form? Lesson Essential Question:
Chapter 7 “Ionic and Metallic Bonding”. Section 7.2 Ionic Bonds and Ionic Compounds l OBJECTIVES: –Explain the electrical charge of an ionic compound.
IONIC AND METALLIC BONDING Chapter 7. Section Overview 7.1: Ions 7.2: Ionic Bonds and Ionic Compounds 7.3: Bonding in Metals.
 Determine the number of valence electrons in an atom of a representative element  Explain how the octet rule applies to atoms of metallic and non-metellic.
Ionic Bonding What happens to the e-? Electron Dot diagrams l A way of keeping track of valence electrons. l How to write them l Write the symbol. l.
Warm-Up: Put on Page 14 l Write the electron configuration, orbital diagram, and electron dot diagram for the following elements: 1.Iron 2.Sulfur.
Chapter 8 Ionic and Metallic Bonding Keeping Track of Electrons l The electrons responsible for the chemical properties of atoms are those in the outer.
“Ionic and Metallic Bonding” Valence Electrons are…? l The electrons responsible for the chemical properties of atoms, and are those in the outer energy.
Chapter 7 “Ionic and Metallic Bonding” Pre-AP Chemistry Charles Page High School Stephen L. Cotton.
Draw an orbital diagram for Al. Electrons and Ions Which electrons are responsible for chemical properties? Valence electrons Core electrons.
Chapter 7 “Ionic, Covalent and Metallic Bonding”
Chapter 7 “Ionic and Metallic Bonding” Valence Electrons are… l The electrons responsible for the chemical properties of atoms, and are those in the.
Chapter 8 “Metallic Bonding” Pre-AP Chemistry Atascocita High School James R. Simms.
Draw an orbital diagram for Al
“Ionic and Metallic Bonding”
Section 6.3 “Ionic Bonding and Ionic Compounds”
Ionic and Metallic Bonding Chapter 7
Chapter 7 “Ionic and Metallic Bonding”
Chapter 7 “Ionic and Metallic Bonding”
Metallic Bonds 2a. Students know atoms combine to form molecules by sharing electrons to form covalent or metallic bonds or by exchanging electrons to.
Warmup 3/1 A(n) ______ produces hydroxide ions (OH1-) when dissolved in water. A(n) ______ produces hydrogen ions (H1+) when dissolved in water What are.
…electrons are transferred
Chapter 7 “Ionic and Metallic Bonding”
Valence Electrons, Ions, and Lewis Dot Diagrams
Chapter 7, 8, and 9 “Ionic, Covalent, and Metallic Bonding”
Chapter 7 Ionic and Metallic Bonding
“Ionic and Metallic Bonding”
Chapter 7 “Ionic and Metallic Bonding”
“Ionic and Metallic Bonding”
Chapter 7 Ionic and Metallic Bonding
Chapter 7 “Ionic and Metallic Bonding”
Chapter 14 “Ionic and Metallic Bonding”
Chemical Bonding III. Ionic Compounds.
Chapter 7 “Ionic and Metallic Bonding”
Chapter 7 Ionic and Metallic Bonding
Chapter 7 & 8 Ions and Bonding.
Chapter 7 “Ionic and Metallic Bonding”
…electrons are transferred
Electrons and Ions Valence electrons Core electrons
Presentation transcript:

Chapter 7 “Ionic and Metallic Bonding” Bostick Chemistry

Section 7.1 - Ions OBJECTIVES: Determine the number of valence electrons in an atom of a representative element.

Section 7.1 - Ions OBJECTIVES: Explain how the octet rule applies to atoms of metallic and nonmetallic elements.

Describe how Cations form. Section 7.1 - Ions OBJECTIVES: Describe how Cations form.

Explain how anions form. Section 7.1 - Ions OBJECTIVES: Explain how anions form.

Valence Electrons are…? 1. Electrons in the outer energy level – or the highest occupied energy level of an element’s atoms 2. The electrons responsible for the chemical properties of atoms and are usually the only electrons used in chemical bonds. Valence electrons - The s and p electrons in the outer energy level the highest occupied energy level Core electrons – are those in the energy levels below.

Keeping Track of Electrons Atoms in the same column... Have the same outer electron configuration. Have the same valence electrons. 3) The number of valence electrons are easily determined. It is the group number for a representative element Group 2A: Be, Mg, Ca, etc. have 2 valence electrons

Electron Dot diagrams are… 4. A diagram that shows the valence electrons as dots. How to write them? Write the symbol - it represents the nucleus and inner (core) electrons Put one dot for each valence electron (8 maximum) They don’t pair up until they have to (Hund’s rule) X

The Electron Dot diagram for Nitrogen Nitrogen has 5 valence electrons to show. First we write the symbol. N Then add 1 electron at a time to each side. Now they are forced to pair up. We have now written the electron dot diagram for Nitrogen.

5. Draw the lewis dot (Electron dot) structure for the following: Ar Ca I

The Octet Rule In Chapter 6, we learned that noble gases are unreactive in chemical reactions In 1916, Gilbert Lewis used this fact to explain why atoms form certain kinds of ions and molecules 6. The Octet Rule: in forming compounds, atoms tend to achieve a noble gas configuration; 8 in the outer level is stable Each noble gas (except He, which has 2) has 8 electrons in the outer level

Metals lose electrons to attain a noble gas configuration. Formation of Cations Metals lose electrons to attain a noble gas configuration. 7. They make positive ions (cations) Most nonmetallic atoms achieve a complete octet by gaining or SHARING electrons If we look at the electron configuration, it makes sense to lose electrons: Na 1s22s22p63s1 1 valence electron Na1+ 1s22s22p6 This is a noble gas configuration with 8 electrons in the outer level.

Electron Dots For Cations Metals will have few valence electrons (usually 3 or less); calcium has only 2 valence electrons Ca

Electron Dots For Cations Metals will have few valence electrons Metals will lose the valence electrons Ca

Electron Dots For Cations Metals will have few valence electrons Metals will lose the valence electrons Forming positive ions Ca2+ This is named the “calcium ion”. NO DOTS are now shown for the cation.

Write the electron configuration of zinc

Electron Dots For Cations Let’s do Scandium, #21 The electron configuration is: 1s22s22p63s23p64s23d1 Thus, it can lose 2e- (making it 2+), or lose 3e- (making 3+) Sc = Sc2+ Sc = Sc3+ Scandium (II) ion Scandium (III) ion

Electron Configurations: Anions 16. Nonmetals gain electrons to attain noble gas configuration. They make negative ions (anions) S = 1s22s22p63s23p4 = 6 valence electrons S2- = 1s22s22p63s23p6 = noble gas configuration.

They have relatively full valence shells! 17. What property of nonmetallic elements makes them more likely to gain electrons than lose electrons? They have relatively full valence shells!

18. Halide Ions – gain 1 electron to become… A halide ion is a halogen atom bearing a negative charge. The halide anions are fluoride (F−), chloride (Cl−), bromide (Br−), iodide (I−) and astatine (At−).

Electron Dots For Anions Nonmetals will have many valence electrons (usually 5 or more) They will gain electrons to fill outer shell. 3- P (This is called the “phosphide ion”, and should show dots)

Stable Electron Configurations All atoms react to try and achieve a noble gas configuration. Noble gases have 2 s and 6 p electrons. 8 valence electrons = already stable! This is the octet rule (8 in the outer level is particularly stable). Ar

Section 7.2 Ionic Bonds and Ionic Compounds OBJECTIVES: Explain the electrical charge of an ionic compound.

Section 7.2 Ionic Bonds and Ionic Compounds OBJECTIVES: Describe three properties of ionic compounds.

Anions and cations are held together by opposite charges (+ and -) Ionic Bonding Anions and cations are held together by opposite charges (+ and -) Ionic compounds are called salts. Simplest ratio of elements in an ionic compound is called the formula unit. The bond is formed through the transfer of electrons (lose and gain) Electrons are transferred to achieve noble gas configuration.

Ionic Compounds Also called SALTS Made from: a CATION with an ANION (or literally from a metal combining with a nonmetal)

Ionic Bonding Na Cl The metal (sodium) tends to lose its one electron from the outer level. The nonmetal (chlorine) needs to gain one more to fill its outer level, and will accept the one electron that sodium is going to lose.

Na+ Cl - Note: Remember that NO DOTS are now shown for the cation! Ionic Bonding Na+ Cl - Note: Remember that NO DOTS are now shown for the cation!

Ca P Lets do an example by combining calcium and phosphorus: Ionic Bonding Lets do an example by combining calcium and phosphorus: Ca P All the electrons must be accounted for, and each atom will have a noble gas configuration (which is stable).

Ionic Bonding Ca P

Ionic Bonding Ca2+ P

Ionic Bonding Ca2+ P Ca

Ionic Bonding Ca2+ P 3- Ca

Ionic Bonding Ca2+ P 3- Ca P

Ionic Bonding Ca2+ P 3- Ca2+ P

Ionic Bonding Ca Ca2+ P 3- Ca2+ P

Ionic Bonding Ca Ca2+ P 3- Ca2+ P

Ionic Bonding Ca2+ Ca2+ P 3- Ca2+ P 3-

= Ca3P2 Ionic Bonding Formula Unit This is a chemical formula, which shows the kinds and numbers of atoms in the smallest representative particle of the substance. For an ionic compound, the smallest representative particle is called a: Formula Unit

Properties of Ionic Compounds Crystalline solids - a regular repeating arrangement of ions in the solid: Fig. 7.9, page 197 Ions are strongly bonded together. Structure is rigid. High melting points Coordination number- number of ions of opposite charge surrounding it

NaCl CsCl TiO2 - Page 198 Coordination Numbers: Both the sodium and chlorine have 6 NaCl Both the cesium and chlorine have 8 CsCl Each titanium has 6, and each oxygen has 3 TiO2

Do they Conduct? Conducting electricity means allowing charges to move. In a solid, the ions are locked in place. Ionic solids are insulators. When melted, the ions can move around. Melted ionic compounds conduct. NaCl: must get to about 800 ºC. Dissolved in water, they also conduct (free to move in aqueous solutions)

- Page 198 The ions are free to move when they are molten (or in aqueous solution), and thus they are able to conduct the electric current.

Section 7.3 Bonding in Metals OBJECTIVES: Model the valence electrons of metal atoms.

Section 7.3 Bonding in Metals OBJECTIVES: Describe the arrangement of atoms in a metal.

Section 7.3 Bonding in Metals OBJECTIVES: Explain the importance of alloys.

How metal atoms are held together in the solid. Metallic Bonds are… How metal atoms are held together in the solid. Metals hold on to their valence electrons very weakly. Think of them as positive ions (cations) floating in a sea of electrons: Fig. 7.12, p.201

+ Electrons are free to move through the solid. Sea of Electrons Electrons are free to move through the solid. Metals conduct electricity. +

Hammered into shape (bend). Also ductile - drawn into wires. Metals are Malleable Hammered into shape (bend). Also ductile - drawn into wires. Both malleability and ductility explained in terms of the mobility of the valence electrons

Due to the mobility of the valence electrons, metals have: - Page 201 Due to the mobility of the valence electrons, metals have: Notice that the ionic crystal breaks due to ion repulsion! 1) Ductility 2) Malleability and

Malleable + Force

+ + + + Force + + + + + + + + Malleable Mobile electrons allow atoms to slide by, sort of like ball bearings in oil. + + + + Force + + + + + + + +

Ionic solids are brittle Force + -

Ionic solids are brittle Strong Repulsion breaks a crystal apart, due to similar ions being next to each other. + - Force + - + - + -

Crystalline structure of metal If made of one kind of atom, metals are among the simplest crystals; very compact & orderly Note Fig. 7.14, p.202 for types: 1. Body-centered cubic: every atom (except those on the surface) has 8 neighbors Na, K, Fe, Cr, W

Crystalline structure of metal 2. Face-centered cubic: every atom has 12 neighbors Cu, Ag, Au, Al, Pb 3. Hexagonal close-packed every atom also has 12 neighbors different pattern due to hexagonal Mg, Zn, Cd

We use lots of metals every day, but few are pure metals Alloys We use lots of metals every day, but few are pure metals Alloys are mixtures of 2 or more elements, at least 1 is a metal made by melting a mixture of the ingredients, then cooling Brass: an alloy of Cu and Zn Bronze: Cu and Sn

Why use alloys? Properties are often superior to the pure element Sterling silver (92.5% Ag, 7.5% Cu) is harder and more durable than pure Ag, but still soft enough to make jewelry and tableware Steels are very important alloys corrosion resistant, ductility, hardness, toughness, cost

Table 7.3, p.203 – lists a few alloys More about Alloys… Table 7.3, p.203 – lists a few alloys Types? a) substitutional alloy- the atoms in the components are about the same size b) interstitial alloy- the atomic sizes quite different; smaller atoms fit into the spaces between larger “Amalgam”- dental use, contains Hg

End of Chapter 7