Yong Lee ICU Registrar John Hunter Hospital

Slides:



Advertisements
Similar presentations
Pneumonia SAHD Senior Academic Half Day Matt Rogers & James Clayton
Advertisements

Fungal infection. Endemic fungal pneumonia pathogens: – Histoplasma capsulatum – Coccidioides immitis – Blastomyces dermatitidis – Paracoccidioides brasiliensis.
PNEUMONIA Fadi J. Zaben RN MSN.
What is Pneumonia and How Do I Prevent it?
Geny Posada Karina Acevedo Eduardo Alcantar.  Lower respiratory infection  Affects one or both lungs  Bacteria in the alveoli become inflamed with.
Nikola Bla ž evi ć Mentor: A. Ž mega č Horvat. - inflammation of the lungs caused by infection - many different causes: bacteria, viruses, fungi, idiopathic.
Lecturer of Adult Nursing Second year
Prof. Dr. Bilun Gemicioğlu
Pneumonia Why do we need to know about it? Long recognized as a major cause of death, Pneumonia has been studied intensively since late 1800s. Despite.
Pneumonia An acute respiratory illness associated with recently developed pulmonary shadowing which is either segmental or affecting more than one lobe.
Pneumonia: nursing management Islamic University Nursing College.
Pathology of Pneumonia
Streptococcus pneumoniae Chapter 23. Streptococcus pneumoniae S. pneumoniae was isolated independently by Pasteur and Steinberg more than 100 years ago.
COMMUNITY ACQUIRED PNEUMONIA…..AN OVERVIEW DR E. A. ODEGHE.
SECONDARY LOBULE Normal lung histology Normal lung histology Inflammatory Cells lsPneumonia Inflammatory Cells lsPneumonia.
Adult Medical-Surgical Nursing Respiratory Module: Pneumonia.
Lower Respiratory Tract Infection. Pneumonia Common with high morbidity and mortality rates. Acute respiratory infection with focal chest signs and radiographic.
Pneumonia: Definition: Pneumonia is an inflammatory condition of the lung— especially affecting the microscopic air sacs (alveoli), and the parenchyma.
LOWER RESPIRATORY TRACT INFECTIONS Dr. Syed Yousaf Kazmi Assist Prof Microbiology.
Community acquired pneumonia A/Prof Peter Wark Department of Respiratory and Sleep Medicine John Hunter Hospital.
Pneumonia and Sepsis By Oliver Putt and Priyanca Patel For WMS Peer Support – 11 th November 2014.
Pneumonia & Other Patterns of Acute Lung Injury
Bronchiectasis SS Visser, Pulmonology Internal Medicine UP.
Dr A.J.France © A.J.France Objectives  Define the range of conditions  Recognise the common clinical presentations  Understand the significance.
Lower Respiratory Tract Infections: Pneumonia Pharm.D Balsam Alhasan.
Diseases of the Lower Respiratory System Nursing II Valencia Community College.
Andriy Lepyavko, MD, PhD Department of Internal Medicine № 2.
Serum procalcitonin and C-reactive protein in children with community- acquired pneumonia K.Gogvadze, I.Guramishvili, I.Chkhaidze, K.Nemsadze, T.Maglakelidze.
TABLE Common Causes of Community-Acquired Pneumonia in Patients Who Do Not Require Hospitalization* Mycoplasma pneumoniae Streptococcus pneumoniae.
Pneumonia Dr. Abdul-Monim Batiha Assistant Professor Critical Care Nursing Philadelphia university.
Pneumonia Dr. Meg-angela Christi Amores. Definition infection of the pulmonary parenchyma often misdiagnosed, mistreated, and underestimated community-acquired.
This lecture was conducted during the Nephrology Unit Grand Ground by Medical Student under Nephrology Division under the supervision and administration.
Response to foreign body Inflammatory reaction –Localized –Generalized Generalized inflammatory reaction –Infective –Noninfective Sepsis: Generalized inflammatory,
Andriy Lepyavko, MD, PhD Department of Internal Medicine № 2.
 What are the signs to diagnose severe pneumonia?  Enumerate 4 organisms for community acquired pneumonia.
Pneumonia Egan’s Chapter 22. Mosby items and derived items © 2009 by Mosby, Inc., an affiliate of Elsevier Inc. 2 Introduction Infection involving the.
LRTIs and Sepsis Poppy. Bronchitis/Pneumonia Bronchitis ▫Infection & inflammation of airways Pneumonia ▫Infection & inflammation of alveoli.
 Definition An inflammation of lung parenchyma caused by various microorganisms, including bacteria, mycobacteria, fungi and viruses.
ax0thor_lecthorax1.jpg RUL RML RLL LUL LLL Lingula.
RESPIRATORY SYSTEM AND DISORDERS S. Buckley RN, MSN Copyright 2008.
بسم الله الرحمن الرحيم. BronchiolitisBronchiolitis By Hana ’ a M.N. Tashkandi.
Pneumonia המצגת הוכנה ע " י אסא טל סטודנט שנה 4 בית הספר לרפואה אוניברסיטת תל - אביב מחלקה פנימית ג ' המרכז הרפואי שיבא טיוטור : דר ' חוסם קאסם.
Pneumonia. Definition Pneumonia is an inflammation of the lung parenchyma that is caused by a microbial agent. “Pneumonitis” is a more general term that.
폐렴으로 오인할 수 있는 폐렴 외 질환 호흡기 내과 R3 최 문 찬.
Community Acquired Pneumonia. Definitions Community acquired pneumonia (CAP) – Infection of the lung parenchyma in a person who is not hospitalized or.
Comparison between pathogen directed antibiotic treatment and empiri cal broad spectrum antibiotic treatment in patients with community acquired pneumonia.
ABDULLAH M. AL-OLAYAN MBBS, SBP, ABP. ASSISTANT PROFESSOR OF PEDIATRICS. PEDIATRIC PULMONOLOGIST. PNEUMONIA.
PNEUMONIA BY: NICOLE STEVENS.
PNEUMONIA DR. FAWAD AHMAD RANDHAWA M.B.B.S. ( KING EDWARD MEDICAL COLLEGE) M.C.P.S; F.C.P.S. ( MEDICINE) F.C.P.S. ( ENDOCRINOLOGY) ASSISTANT PROFESSOR.
APIC Chapter 13 Journal Club March 16, 2015 Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults NEJM – July 30, :5 Presented.
PNEUMONIA COMMUNITY-ACQUIRED PNEUMONIA. RESPIRATORY INFECTIONS URTI – common cold, usually viral. Pharyngitis, tracheitis, rhinitis,sinusitis LRTI – Lower.
Hospital-Acquired Pneumonia
Infective endocarditis
Adult Respiratory Distress Syndrome
Community Acquired Pneumonia
Pneumonia Dr. Gerrard Uy.
Dr Asmaa fathy abdellah hassan
Prof Frank Peters Dept Family Medicine University of Pretoria
PHARMACOTHERAPY III PHCY 510
Lower respiratory infections
Respiratory system ا.م.د.بيداء حميد عبدالله.
Ordering Sputum Cultures in Community Acquired Pneumonia
Community acquired pneumonia (CAP)
Focus on Pneumonia.
Community acquired pneumonia (CAP)
M. Honkinen, E. Lahti, R. Österback, O. Ruuskanen, M. Waris 
Community Acquired Pneumonia
Pneumonia.
Presentation transcript:

Yong Lee ICU Registrar John Hunter Hospital Pneumonia Yong Lee ICU Registrar John Hunter Hospital

Objectives Pathogenesis Pathophysiology Clinical features Community acquired pneumonia, investigations, assessments of severity, empirical therapy MRSA Influenza Nosocomial pneumonia

Pathogenesis 3 major routes of entry Upper airway colonisation Oropharyngeal or gastric aspiration * Inhalation of aerosols Haematogenous Upper airway colonisation S.Pneumoniae, H. Influenzae, Mixed aerobic and anaerobic bacteria E.Coli, Klebsiella more frequent in alcoholics, institutionalised elderly, poor oral hygiene Normal host defenses Bronchial mucociliary clearance, phagocytic cells in alveoli and bronchial mucosa

Quantity of material aspirated Uncontrolled seizures, abnormal airway motor control periodontal disease, bronchial obstruction Nature of bacteria in aspirated material Highly efficient pathogens (legionella, mycoplasma, chlamydia, coxiella, fungal) Efficiency of host’s pulmonary defense mechanisms Post viral respiratory infection, alcoholics, COPD with impaired mucociliary clearance, relative immunologic impairment Haematogenous spread Established infection elsewhere (IV drug user) From damaged skin (brucellosis, melioidosis)

Pathophysiology Proliferation of microorganisms within pulmonary parenchyma elicit host’s acute inflammatory response Exudation of protein rich fluid and phagocytic cells Local mechanical consequences Impaired distribution of ventilation, decrease in lung compliance -> dyspnoea V/Q mismatch Systemic changes Activation of acute inflammatory response (interleukin 1, cytokines) result in fever, leukocytosis Bacteremia or microbial antigenemia may activate systemic inflammatory response leading to septic shock

Clinical features Systemic response Pulmonary symptoms Physical Fever, increased WCC, other sepsis syndromes Pulmonary symptoms Cough, sputum production, dyspnoea, pleuritic chest pain Physical Inflammatory pulmonary parenchymal process (rales, tachypnoea) Consolidation (bronchial breathing, dullness to percussion Abnormal lung function (arterial hypoxaemia, hypocapnia) Radiographic pulmonary infiltrate c/w pneumonia

Community Acquired Pneumonia

Assessment Clinical features c/w pneumonia Consider patient’s age and co-morbidities The presence of clinical features of organ system failures CXR demonstrating consolidation Consider mild (outpatient with appropriate follow up), moderate or severe Investigation for causal pathogen Sputum gram stain*, blood cultures Pneumococcal and legionella urinary antigen assay, nose and throat swab for respiratory viral nucleic acid testing (PCR) Mycoplasma IgM serology, acute and convalescent serology for mycoplasma, legionella, chlamydophilia and influenza Procalcitonin* *BAL

Assessment of severity PSI (Pneumonia Severity Index) CURB 65 (Confusion, Urea, Resp rate, Blood pressure, age <65) Both developed from statistical analyses of features c/w 30 mortality However majority of patients who die of CAP are elderly persons with multiple co-morbidity Tools predicting mortality are less accurate in identifying patients who will benefit from admission to ICU CORB SMART-COP

CORB C = acute confusion O = oxygen saturation 90% or less R = respiratory rate 30 breaths or more per minute B = systolic blood pressure less than 90 mm Hg or diastolic blood pressure 60 mm Hg or less Interpretation of CORB score 'Severe CAP' = the presence of at least two of these features. In the Australian study cohort, the accuracy of CORB for predicting need for IRVS using presence of at least two features was: sensitivity = 81%, specificity = 68% positive predictive value (PPV) = 18% negative predictive value (NPV) = 98% area under the receiver operating characteristic (ROC) curve = 0.74.

SMART-COP

SMART-COP Interpretation of SMART-COP score 0 to 2 points—low risk of needing intensive respiratory or vasopressor support (IRVS) 3 to 4 points—moderate risk (1 in 8) of needing IRVS 5 to 6 points—high risk (1 in 3) of needing IRVS 7 or more points—very high risk (2 in 3) of needing IRVS   Severe CAP = a SMART-COP score of 5 or more points. In the Australian Community-Acquired Pneumonia Study (ACAPS) cohort, the accuracy for predicting receipt of IRVS with a SMART-COP score of 3 or more points was: sensitivity = 92% specificity = 62% PPV = 22% NPV = 99% area under ROC curve = 0.87. The SMART-COP severity scoring tool can be modified to make it suitable for use by primary care physicians A modified version has also been developed for use in tropical Australia

Empirical management Mild CAP If no improvement in 48 hrs Reasonable for single shot benzylpenicillin 1.2g Amoxycillin 5 – 7 days Or if atypical is suspected Doxycycline or Clarithromycin (as single agents) If no improvement in 48 hrs Consider dual therapy of amoxycillin + doxycycline or clarithromycin Some resistant strains of doxycycline and clarithromycin streptococcus pneumoniae in some regions, consider switching to cefuroxime or moxifloxacin or assess need for hospital admission

Empirical management Moderate CAP Tropical or non tropical region, risk factors for Burholderia pseudomallei, Acinetobacter baumannei (DM, chronic lung disease, heavy ETOH, chronic renal failure) Non tropical, no risk factors Benzylpenicillin IV PLUS Doxycycline/ Clarithromycin Oral Add Gentamicin or change to ceftrixone if GN Bacilli identified Tropical, risk factors Ceftriaxone PLUS initial dose of Gentamicin

Empirical management Severe Pneumonia Non tropical region Ceftriaxone IV Benzylpenicillin IV + Gentamicin*(short term empirical or directed therapy only) Cefotaxime IV PLUS Azithromycin IV in all cases Tropical region Meropenem IV or Imipenem IV PLUS Azithromycin IV in call cases

Staphylococcal pneumonia Clinical presentation is suggestive of staphylococcal pneumonia R sided endocarditis, IVDU, gram stain positive cluster, CXR with cavitatory pneumonia cMRSA (different from hMRSA) Increasing esp. in indigenous and pacific islander, IVDU More clinically aggressive but may be susceptible to routine Abx (clindamycin and bactrim) Appropriate susceptibility testing is therefore crucial Hospitalised patients Intubated patients and late-onset nosocomial infections Severely ill patients should be treated for BOTH non-MRSA and MRSA (e.g flucloxacillin & Vancomycin) until susceptibility results available

Non MRSA MRSA Flucloxacillin IV Cephalothin or cephazolin IV (if penicillin hypersensitive) Vancomycin (if immediate penicillin hypersensitive) MRSA Vancomycin IV *Linezolid, if VISA or hVISA Consider additional if severe (clindamycin, linezolid, rifampicin + fusidic acid) depending on susceptibility

Influenza Influenza A and B viruses Usually cause seasonal minor or major epidemics Novel strains (e.g H5N1, H1N1) also with potential to cause epidemics due to lack of pre-existing immuniity in humans Infection is spread by droplets and fomite contact so appropriate infection control are important Rapid specific testing such as nucleic acid tests (eg polymerase chain reaction [PCR]) for influenza on nose or throat swab specimens are the most useful tests to make the diagnosis Clinical features alone may be reliable enough for diagnosis when the pre-test probability of influenza is high, for example during known epidemics.

Treatment Treatment with a neuraminidase inhibitor (oseltamivir or zanamivir) has been associated with a reduced rate of complications of influenza in observational studies Observational studies have also shown an increase in mortality if hospitalised patients retrospectively shown to have had influenza were not treated with oseltamivir. Treatment is generally thought to be of greatest benefit if commenced early (ideally within 48 hours of symptom onset), and if targeted to people at highest risk of complications. Where severe illness (eg pneumonitis) is already present, treatment should be offered regardless of the patient's risk group or duration of symptoms Treatment should be prioritised for people with risk factors for poor outcomes. For these people treatment may be considered even if commenced more than 48 hours after the onset of symptoms.

Treatment High risk groups If treatment indicated Pregnant women, morbidly obese, underlying chronic disease, immunosuppressed, homeless, nursing home residents, indigenous Australians, the elderly and very young If treatment indicated Oseltamivir oral for 5 days OR Zanamivir inhalation for 5 days Antibacterials if clinical presentation suggests bacterial or secondary bacterial infection develops Vaccination with current influenza vaccine provides protection and complications in ~70% of those vaccinated Recommended for all health care worker, age >65, Aboriginal/ TSI > 15y Prophylaxis should be considered for close contacts of proven cases, particularly if those contacts are themselves in high-risk groups

Nocosomial Pneumonia or Hospital Acquired Pneumonia HAP Presentation often unusual because it is affected by advanced age, co-morbidity and neurological disorders Classic respiratory symptoms often mild and extrapulmonary manifestations (e.g. GI disorder, confusion) are frequeny Pneumonia that is not incubating at time of admission to hospital and develops in patients hospitalised for 48 h or longer VAP is usually defined as pneumonia developing ≥48 h after implementing ET intubation and/or mechanical ventilation that was not present before intubation Divided to early or late onset

Early onset HAP Late onset HAP Within 4 -5 days of hospital admission and tends to be caused by antibiotic sensitive community acquired pathogens However, increasing frequency of early onset HAP caused by nosocomial pathogens (? Related to concept of healthcare – associated pneumonia) HCAP - any patient admitted to an acute care hospital for 2 or more days within 90 days of the infection; nursing home resident; attended a hospital or haemodialysis clinic; received recent intravenous antibiotic therapy, chemotherapy, or wound care within the past 30 days of the current infection Late onset HAP Tends to be caused by antibiotic resistant hospital opportunists (e.g. Pseudomonas, MRSA)

Diagnosis of HAP Reliable diagnosis is hard If one or more of the following criteria are present, pneumonia should be considered in the differential diagnosis: purulent sputum or tracheal secretions, and new and/or persistent infiltrate on chest X-ray, which is otherwise unexplained increased oxygen requirement temperature greater than 38.3 ºC blood leucocytosis (greater than 11 x 109/L) or leucopenia (less than 4 x 109/L) The presence of bacteria in expectorated sputum or ETT aspirate usually represent colonisation only, and on its own does not justify a diagnosis of HAP

HAP aetiology Hospitalised patients frequently develop colonisation of the oropharynx with aerobic GN bacilli, and may also be exposed to multiresistant hospital pathogens e.g.(MRSA), drug-resistant Enterobacteriaceae, Pseudomonas aeruginosa, Acinetobacter species and Stenotrophomonas maltophilia Recent antibiotic therapy is a distinct risk factor for HAP due to drug-resistant bacteria and/or Pseudomonas aeruginosa In cases admitted to intensive care for pneumonia management, also consider testing for Legionella (in adults) and influenza infection.

HAP Treatment Treatment stratification Low risk of MDR (Low risk ward, high risk area of < 5 days) High risk of MDR (High risk ward >5 days, consider HCAP) Antibiotic susceptibility will differ between institutions Recommended initial antibiotic regimen may need to cover local pathogens and take account of the patient’s recent Abx exposure and culture results Failure to control infection should prompt re-evaluation of antibiotic therapy and consideration of non-infectious diagnoses

Low risk MDRO Mild disease Moderate to severe disease Amoxycillin with clavulanic acid oral OR Benzylpenicillin + single dose gentamicin Moderate to severe disease Ceftriaxone IV OR Benzylpenicillin + Gentamicin OR Cefotaxime IV Tazocin IV Timentin IV Antibiotic susceptibility to guide ongoing therapy Switch to oral Abx after significant improvement Consider early cessation of therapy in patients who are shown to have alternative diagnosis

High risk MDR organism Little evidence Tazocin IV or Timentin IV or Cefepime IV If ventilated patient, add Gentamicin for 1 dose and determine subsequent 1 or 2 doses dependant of renal function If predominant GPC (clusters) on gram stain or known to be colonised Vancomycin IV Consider risk factors and extrapulmonary symptoms consider Legionella’s There is evidence that the response to appropriate ABx Rx for ventilated patients occurs within the first 6 days and that prolonged therapy results in colonisation and re-infection with resistant organisms. Treatment for 8 days is recommended except for Pseudomonas aeruginosa or Acinetobacter species when treatment may be needed for up to 15 days.

References Principles of Critical Care 3rd ed. - J. Hall, G. Schmidt, L. Wood (eds) (Mc-Graw-Hill, 2005) Therapeutic guidelines, Antibiotics, 2010 Buising KL, Thursky KA, Black JF, MacGregor L, Street AC, Kennedy MP, et al. Identifying severe community-acquired pneumonia in the emergency department: a simple clinical prediction tool. Emerg Med Australas 2007;19(5):418-26 Charles PG, Wolfe R, Whitby M, Fine MJ, Fuller AJ, Stirling R, et al. SMART-COP: a tool for predicting the need for intensive respiratory or vasopressor support in community-acquired pneumonia. Clin Infect Dis 2008;47(3):375-84 Davis JS, Cross GB, Charles PG, Currie BJ, Anstey NM, Cheng AC. Pneumonia risk stratification in tropical Australia: does the SMART-COP score apply? Med J Aust;192(3):133-6 Charles PGP, Whitby M, Fuller AJ, Stirling R, Wright AA, Korman TM, et al, the ACAPS Collaboration, Grayson ML. The eitiology of community-acquired pneumonia in Australia: why penicillin plus doxycycline or a macrolide is the most appropriate therapy. Clin Infect Dis 2008; 46:1513-21