Christian Buck, MPIK Heidelberg LowNu Reims, October 2009 Liquid scintillators.

Slides:



Advertisements
Similar presentations
The SNO+ Experiment: Overview and Status
Advertisements

Measurement of low level neutron fluxes: status and prospects John McMillan University of Sheffield.
Purification of Liquid Scintillators for Low Radioactivity Frank Calaprice Princeton University Borexino Experiment 6/14/13 RENO Workshop June ,
R&D on Liquid-Scintillator Detectors R&D and Astroparticle Physics Lisbon, January 8th 2008 Michael Wurm Technische Universität München.
Analysis of the Optical Properties of Organic Liquid Scintillator in LENA DPG-Tagung in Heidelberg M. Wurm, T. Marrodán Undagoitia, F. v. Feilitzsch,
LENA Scintillator Characterization Transregio 27 SFB-Tage in Heidelberg 9/10. Juli 2009 Michael Wurm.
2007 March 21stLAUNCH MPI, Heiderberg1 Solar Neutrino at KamLAND Sei Yoshida Reserch Center for Neutrino Science, Tohoku Univ. for the KamLAND.
1 Calor02 Pasadena (USA) March 2002Lino Miramonti - University and INFN Milano Borexino: A Real Time Liquid Scintillator Detector for Low Energy.
Brookhaven Science Associates U.S. Department of Energy Studies of Gd-LS in the U.S.A. (and the U.K.) Richard L. Hahn Solar Neutrino/Nuclear Chemistry.
Radio-Purification of Neodymium Chloride Sunej Hans and Minfang Yeh Chemistry Department, Brookhaven National Laboratory, Upton, New York.
Prototype of the Daya Bay Neutrino Detector Wang Zhimin IHEP, Daya Bay.
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
Alternative Prototype Detector Design D. Reyna Argonne National Lab.
Soo-Bong Kim Seoul National Univ. Current Status of RENO (Symposium on “Physics of Massive Neutrinos” May 20-22, 2008, Milos, Greece)
Christian Buck, MPIK Heidelberg LAUNCH 09 November, 11th 2009 The Double Chooz reactor neutrino experiment.
Gd-Loaded Liquid Scintillator (Gd-LS): Past Problems, Current Solutions, & Future Directions Richard L. (Dick) Hahn OHEP Review of Daya Bay Project LBNL,
Double Beta Decay With 20-ton Metal Loaded Scintillators A Detector for DUSEL? Frank Calaprice Princeton University Aldo Ianni LNGS.
Gd Liquid scintillator: completion of the R&D! Stability 0,1 % Gd in PXE LENS R&D  new metal β-diketone molecule (MPIK) Stable: 0.1% Gd-Acac (few months)
RENO Liquid Scintillator R&D Daejung Kong (KNU) KPS Spring Meeting, April 19, 07 경북대, 경상대, 동신대, 부산대, 세종대, 서울대, 서울시립대, 성균관대, 전남대, INR/IPCE ( 러시아 ) Introduction.
LENA Low Energy Neutrino Astrophysics L. Oberauer, Technische Universität München LENA Delta EL SUD Meeting.
1 Scintillators  One of the most widely used particle detection techniques Ionization -> Excitation -> Photons -> Electronic conversion -> Amplification.
Liquid Scintillator R&D for RENO Lee, Jaison For RENO Collaboration.
Status of Mineral Oil R&D 1 st RENO Collaboration Meeting Daejung Kong, KNU.
Double Beta Decay in SNO+ Huaizhang Deng University of Pennsylvania.
1 LENA Low Energy Neutrino Astronomy NOW 2010, September 6, 2010 Lothar Oberauer, TUM, Physik-Department.
Christian Buck, MPIK Heidelberg for the Double Chooz Collaboration LAUNCH March 23rd, 2007 The Double Chooz experiment.
Simulation study of RENO-50 Jungsic Park Seoul National University RENO-50 International Workshop June 13-14, 2013 Hoam Faculty House, Korea.
1 Update of US Gd-LS Minfang Yeh and Richard L. Hahn BNL, Chemistry Department, Upton NY.
Soo-Bong Kim Seoul National Univ. RENO for Neutrino Mixing Angle  13 5 th International Workshop on Low Energy Neutrino Physcis (Neutrino Champagne LowNu.
A screening facility for next generation low-background experiments Tom Shutt Laura Cadonati Princeton University.
Double Chooz A Reactor θ 13 Experiment M.Motoki Tohoku Univ. On behalf of the Double Chooz Collaboration Reactor θ 13 measurementReactor θ 13 measurement.
2004/Dec/12 Low Radioactivity in CANDLES T. Kishimoto Osaka Univ.
LENA – a liquid scintillator detector for Low Energy Neutrino Astronomy and proton decay Marianne Göger-Neff NNN07 TU MünchenHamamatsu Detector outline.
서준석, KPS, R&D of Extruded Plastic Scintillator 서 준석 김 동희, 양 유철, 오 영도, 장 성현, 조 기현, KHAN Adil, MIAN Shabeer Ahmad ( 경북대학교 )
SYSTEMATICS (preliminary consideration) V. Sinev for Kurchatov Institute Neutrino group.
A detector design for the Daya Bay reactor neutrino experiment Yifang Wang Institute of High Energy Physics, Beijing Jan. 18, 2004.
Yasuhiro Kishimoto for KamLAND collaboration RCNS, Tohoku Univ. September 12, 2007 TAUP 2007 in Sendai.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
R&D Activities and Plan Changgen Yang Institute of High Energy Physics Beijing.
Status of Mineral Oil R&D 2 nd LSc R&D Group Meeting 2006/07/27 Adil, KNU.
LoNu Workshop R. B. Vogelaar October 14, 2006 Extraordinary Neutrino Beam Free of Charge For NEUTRINO PHYSICS: WELL DEFINED HIGHEST FLUX (~10 11 cm -2.
Results for the Neutrino Mixing Angle  13 from RENO International School of Nuclear Physics, 35 th Course Neutrino Physics: Present and Future, Erice/Sicily,
The Indium-loaded Liquid Scintillator (InLS) Zheng Chang*, Christian Grieb and Raju S. Raghavan Dept, of Physics, Virginia Tech, Blacksburg, VA Richard.
Nd double beta decay search with SNO+ K. Zuber, on behalf of the SNO+ collaboration.
The Daya Bay Reactor Neutrino Experiment R. D. McKeown Caltech On Behalf of the Daya Bay Collaboration CIPANP 2009.
Detection of the Diffuse Supernova Neutrino Background in LENA & Study of Scintillator Properties Michael Wurm DPG Spring Meeting, E15.
Update of Gd-LS R&D at IHEP Ding Yayun, Zhang Zhiyong, Cao Jun Institute of High Energy Physics, Chinese Academy of Sciences.
Jun Cao Jan. 18, 2004 Daya Bay neutrino experiment workshop (Beijing) Detector Module Simulation and Baseline Optimization ● Determine module geometric.
A screening facility for next generation low-background experiments Tom Shutt Case Western Reserve University.
Tin loaded liquid scintillator for the double beta decay experiment Presented by H.J.Kim, KIMS Yonsei Univ, 10/23/2002 Workshop on Underground and Astropparticle.
The Double Chooz Monte Carlo (selected topics !) Dario Motta (Irfu/SPP) Anatael Cabrera (APC)
DPF-JPS 2006 Oct 31, Hawaii 1 CANDLES system for the study of 48-Ca double beta decay T. Kishimoto Osaka Univ.
09/04/2006NDM061 CANDLES for the study of 48 Ca double beta decay OGAWA Izumi ( 小川 泉 ) Osaka Univ. ( 大阪大学 )
Synthesis of plastic scintillator and applications Ildefonso León Monzón Universidad Autónoma de Sinaloa Centro de Investigación y de Estudios Avanzados.
The Double Chooz reactor neutrino experiment
Fast neutron flux measurement in CJPL
Nuclear Chemistry/Solar Neutrino Group
(Xin-Heng Guo, Bing-Lin Young) Beijing Normal University
Status of 100Mo based DBD experiment
Simulation for DayaBay Detectors
BNL Neutrino/Nuclear Chemistry Group
Overview of the Jiangmen Underground Neutrino Observatory (JUNO)
Current Status of RENO Soo-Bong Kim Seoul National Univ.
Signal and Background in LENS
Anti-Neutrino Simulations
Daya Bay Neutrino Experiment
Neutrinos Oscillation Experiments at Reactors
Davide Franco for the Borexino Collaboration Milano University & INFN
Low Energy Neutrino Astrophysics
Presentation transcript:

Christian Buck, MPIK Heidelberg LowNu Reims, October 2009 Liquid scintillators

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 Overview  Introduction  Scintillator components  Energy transfers  Metal loaded scintillators  Summary

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 Liquid scintillator past Metal loaded:  Reines  Bugey  Chooz  Palo Verde Unloaded:  KamLand  Borexino

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 Challenges: Stability and purity Palo Verde: A.G.Piepke, S.W.Moser, V.M.Novikov; NIM A 342 (1999) Chooz: τ ~ 240 days Gd(NO 3 ) 3 Chooz Coll.; Eur.Phys.C27, (2003) KamLand Background:

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 Liquid scintillator properties  High energy resolution  Low energy detection threshold  high purity (Borexino)  fast signals (better understanding of timing properties)  moderate cost  Improved stability of metal loaded scintillators

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 Liquid scintillator future  Double Chooz, Daya Bay, Reno  SNO+  LENA,…

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 Liquid scintillator components  Solvent –pseudocumene, toluene, anisole –„Safe scintillators“: PXE, LAB, DIN –Admixtures: alkanes, mineral oil  Primary fluor –PPO –BPO –Butyl-PBD,…  Secondary fluor –Bis-MSB –POPOP α, β, γ * PMT

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 Comparison solvents: Light yield SolventYield (6 g/l PPO) PC1.00 Anisole0.81 PXE0.88 LAB0.74 Dodecan0.40 Oil0.33 MPIK measurements M.Chen, INT Workshop 2005

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 Comparison solvents: Attenuation length MPIK measurements (UV/Vis, 10 cm cell) M.Wurm (TUM), ANT 2009

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 Purification methods  Column purification –Radioimpurities –Optics  N 2 purging – Radon, 85 Kr – Light yield (oxygen)  Water extraction –Radioimpurities (e.g. 40 K)  Distillation – Radioimpurities – Optics

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 Purification methods  Column purification –Radioimpurities –Optics  N 2 purging – Radon, 85 Kr – Light yield (oxygen)  Water extraction –Radioimpurities  Distillation – Radioimpurities – Optics Borexino KamLand CTF LAK Solar neutrino phase

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 Borexino Background PRL 101, (2008) 40 K < 3 ∙ g/g 238 U: 1.6 ± 0.1∙ g/g 232 Th: 6.8 ± 1.5∙ g/g

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 LAB  LAB is proposed in SNO+, Daya Bay, RENO  New high light yield, transparent solvent? – Used since decades – Average light yield – Average transparency  It is a high flash point, low toxicity solvent at moderate cost and reasonable optics,  …but: –Mixture –Biphenyls (absorption/emission!) –Timing properties LAB (6 g/l PPO) PXE (6 g/l PPO)

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 Solvent mixtures Advantage: Parameters tuneable  optimize material compatibility  change timing properties  match density  adjust light yield 6 g/l PPO Light production in alkanes  Radiation creates e -- - hole pairs  Recombination, fragmentation, radicals, reactions  excited molecules  energy transfer to fluors M.Wurm, diploma thesis, TUM(2005) Light yield [% standard] C.Aberle, diploma thesis, MPIK (2008) PXE (mass fraction)

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 Comparison fluors transparent well established high quantum yield BPO (Butyl-)PBD pTP PPO high(est) light yield emission around 400 nm absorption properties limited availibility low solubility poor quantum yield fast overlap with bis-MSB high light yield poor quantum yield costs

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 Energy transfer (non-radiative)

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 Critical concentration Critical distance R 0 : Critical conc.: 50 % Energy transfer Photon emission, decay For PPO < 1g/l in PXE, PC,… For PPO ~ 2.1 g/l in dodecane Donor *Acceptor

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 Light yield model C.Buck, F.X. Hartmann, D.Motta. S.Schönert, CPL, 435 (2007) C.Aberle, diploma thesis, MPIK Heidelberg (2008) See poster by C.Aberle!

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 Timing properties C.Aberle, Diploma thesis, MPIK Heidelberg (2008) D.Motta (CEA Saclay): pulse shape to tag events in different detector regions Target Gamma Catcher candidates Events Time [ns]

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 Metal loaded scintillators  Solar neutrinos (LENS, SIREN): – Metal: Ytterbium, Indium, Gadolinium – Challenge: High loadings  Reactor (Double Chooz, Daya Bay, RENO) – Metal: Gadolinium – Challenge: Stability  ββ-decay (SNO+) – Metal: Neodymium – Challenges: transparency; purity

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 Indium Indium-loaded scintillators at LLBF > 1 year (2003/04)  MPIK: In(acac) 3 (F.X.Hartmann et al.)  INR/LNGS: Carboxylic acid version > 50 g/l Indium D. Motta, C. Buck, F. Hartmann, T. Lasserre, S. Schönert, U.Schwan, NIM A 547 (2005) 368. N.A. Danilov, C.Cattadori, A..di Vacri et al., Radiochemistry 47 (2005)

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 Gadolinium (Carboxylates) Double Chooz mockup (TMHA, MPIK 2003): INR/LNGS: 2 x 1.2 t Gd-LS (0.1%) in frame of LVD Now used in Daya Bay and RENO Y.Ding et al., NIM A 584 (2008) M.Yeh et al., NIM A 578 (2007) arXiv: v1 [physics.ins-det] 11 Mar 2008

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 Gadolinium (β-diketones)  Purified by sublimation  stability/compatibility tests > 4 y  att. length (1 g/l) > 50 m in ROI  100 kg produced

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 Scintillator production for Double Chooz Scintillator production has started Poster by F.X.Hartmann on DC scintillator chemistry

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 Neodymium MPIK (2003): Tests on BDK and CBX versions (F.X.Hartmann et al.) Light yield measurements at LNGS C.Cattadori et al., submitted to NIM A (2009) arXiv: v1 [physics.ins-det] 11 Sep 2009

Christian Buck MPIK Heidelberg Reims, Neutrino Champagne 2009 Summary  Liquid scintillators key technology for upcoming large scale neutrino detectors  Many solvent and fluor candidates - Choice depends on application and detector characteristics - Requirement for „safe“ scintillators (PXE, LAB,…)  Energy transfer models allow light yield predictions  Several applications for metal loaded scintillators  significant improvement in last years (stability etc.)