Presentation is loading. Please wait.

Presentation is loading. Please wait.

Christian Buck, MPIK Heidelberg for the Double Chooz Collaboration LAUNCH March 23rd, 2007 The Double Chooz experiment.

Similar presentations


Presentation on theme: "Christian Buck, MPIK Heidelberg for the Double Chooz Collaboration LAUNCH March 23rd, 2007 The Double Chooz experiment."— Presentation transcript:

1 Christian Buck, MPIK Heidelberg for the Double Chooz Collaboration LAUNCH March 23rd, 2007 The Double Chooz experiment

2 Outline  Motivation  The Double Chooz Concept and Design  Scintillator development at MPIK  Summary

3 Why Double Chooz ?  Improved knowledge of mixing matrix  Θ 13 controls 3 flavor effects (e.g. CP violation only for Θ 13 > 0)  Discovery potential: models often close to experimental bound  Complementarity to beam experiments - Degeneracies + parameter correlations - Optimize future experiments  Discrimination power for normal hierarchy in 0νββ depends on Θ 13 Δm sol 2 ~ 8∙10 -5 eV 2, sin 2 (2Θ 12 ) ~ 0.86 Δm atm 2 ~ 2.5∙10 -3 eV 2, sin 2 (2Θ 23 ) ~ 1 ν2ν2 Δm atm 2 Δm sol 2 ν1ν1 ν3ν3 sin 2 Θ 13 sin 2 Θ 23 sin 2 Θ 12 νeνe νμνμ ντντ

4  Interest of International Atomic Energy Agency (IAEA) in ν e detection -Monitoring of single reactors -Monitoring of countries  Intensity and shape of spectrum depend on isotopic composition  Pu content!  Use Double Chooz near detector as prototype for reactor monitoring  Thermal power (1% ?) Non-proliferation

5 Current proposals  December 2002: 1st European meeting, MPIK  April 2003 – February 2005: 4 int. workshops in U.S., Germany, Japan and Brazil  1st Double Chooz Meeting: Nov 2003 Angra Double-Chooz Kaska Daya bay RENO

6 Double Chooz collaboration  Spokesman: H. de Kerret (APC)  France: CEA/Dapnia Saclay, APC, Subatech (Nantes)  Germany: MPIK Heidelberg, TU München, EKU Tübingen, Universität Hamburg, RWTH Aachen  Italy: LNGS (Gran Sasso)  Russia: RAS, Kurchatov Institute (Moscow)  USA: Alabama, ANL, Chicago, Drexel, Kansas State, LLNL, LSU, Notre Dame, Tennessee  Spain: CIEMAT  Japan: HIT, Kobe, MUE, Niigata, Tohoku, TGU, TIT, TMU  England: University of Oxford

7 The Double Chooz concept ν ν ν ν ν ν ν ν 1051 m 280 m Site location: France D near D far

8 The labs Far detector (300 m w.e., 1.05 km)Near detector (75 m w.e., 280 m) Δm 2 atm = 2.8·10 -3 eV 2 (MINOS best fit) Constant flux ratios

9 Improving Chooz 0.3 %1.5 %Det.eff. < 0.6%2.7 %Σ system. 0.4%2.8%Statistical 0.2 %0.8 %# protons <0.1 %0.7 %Power <0.1 %0.6 %E/fission <0.1 %1.9 %Flux, σ DCChoozerror CHOOZ limit sin 2 (2θ 13 ) < 0.12 – 0.20 R = 1.01  2.8%(stat)  2.7%(syst) Reactor Detector Δm 2 (eV) 2 sin 2 (2Θ) 10 -2 10 -3

10 Sensitivity 2008 Sensitivity 2008 – 2013 (near detector starts 16 months after far) for  m 2 atm = 2.8·10 -3 eV 2

11 Detector design TARGET: (th = 2,3m) - Acrylic vessel (th = 8mm) - 10,3 m 3 LS (1 g/l Gd) γ-catcher: (th = 0,55m) -Acrylic vessel (th = 12mm) - 22,6 m 3 LS Buffer: (th = 1,05m) -Steel vessel (th = 3 mm) -114 m 3 mineral oil Inner veto: (th = 0,5m) -Steel vessel th = 10 mm) -~80 m 3 LS SHIELDING (th = 17 cm) - Steel 7m

12 Neutrino signal n e p 511 keV e+e+  ~ 8 MeV Gd Target: Gd-loaded liquid scintillator Events/200 KeV/3 years sin 2 (2  13 )=0.04 sin 2 (2  13 )=0.1 sin 2 (2  13 )=0.2 Energy [MeV] Neutrino rates: - far: ~70/day - near: ~1000/day

13 Correlated backgrounds n  ~ 8 MeV n deposits energy Gd Fast neutrons Chooz rate: ~1/day Double Chooz simulation:  Far: N b < 0.6/day (90% CL)  Near: N b ~ 3.3/day (90% CL) β-n-cascades (spallation products: 9 Li, 11 Li, 8 He) Expected rate: Far: 1.4/day, Near: 9/day Long-lived

14 Mockup  Goal: - Find technical solutions - Define interfaces - Material compatiblity - Test filling procedure  Volumes: - 100 liter Target - 200 liter Gamma Catcher - 700 liter Buffer  Match scintillator properties: - Densities (1 % in DC) - Light yield

15 Filling system  Simultaneous filling  Air driven pumps  Tubing and valves PFA  Filling 2005 MPIK-HD

16 Mockup results  Gd-concentration unchanged  Optical properties stable

17 Metal loaded scintillators  Development at MPIK since 2000 (C.Buck, F.X.Hartmann, D.Motta, T.Lasserre, S.Schönert, U.Schwan)  Wide interest in different fields: -Solar neutrino physics (In, Yb,…) -Reactors experiments (Gd) -Geo-neutrinos (Gd) -0νββ-decay ( 150 Nd)

18 Scintillator development at MPIK Metal-β-diketonates: R1R1 3+ M R2R2 O O O O O O HC - C-C- H C-C- H R1R1 R1R1 R2R2 R2R2 How to dissolve metal in organic scintillator?  Method 1: Organometallic compound Requirements:  solubility  no light quenching  optical transparency  radiopurity  low reactivity (stability!) Method 2: Carboxylate system stabilized by pH (since 2000)

19 Attenuation length / stability  Stability tests up to 3 years  Tests of concentrates  Temperature tests  Cross check in Saclay  Measured by UV/Vis  10 cm cells  Absorption + Scattering!  No fluors: > 10 m in ROI ROI

20 Scintillator stability Palo Verde: A.G.Piepke, S.W.Moser, V.M.Novikov NIM A 342 (1999) 392-398 Chooz: Time variation fit of attenuation length: Parameter v Chooz: (4.2 ± 0.4)∙10 -3 /d * BDK-system: ≤ 7.5∙10 -5 /d * Chooz Coll., Eur. Phys. J. C27, (2003) 331-374 [v = (1.5 – 2.8)·10 -3 /d)]

21 Scintillator system Excitation by ionizing particle PMT Metal Secondary wavel. shifter Fluorsolvent

22 Gd complex  Approach: Gd-β-diketone  Purification by sublimation  Full scale production started! 8·10 -10 8.7·10 -13 < 2.4·10 -13 Conc. [g/g] 0.250.032< 0.03A/det. [Bq] 0.00065 Th 0.005< 0.0006A/kg [Bq] KU GeMPI at LNGS (M.Laubenstein)

23 Scintillator solvent PXE/dodecane mixture (20/80 Vol):  Optimized ratio - PXE improves light yield - Dodecane improves material compatibility + number of H  Column purification  High flash point, low toxicity  Solvents used in KamLand (Dodecane), Borexino (PXE in CTF)  Backup Linear alkylbenzene

24 Fluor choice Primary fluor properties:  Light yield  Emission spectrum  Energy transfer parameters  Transparency  Radiopurity Scintillator emission spectrum

25 Energy transfer model M  DA * excitation...... M.......... M M O C H In O O O O O Me. C.Buck, F.X.Hartmann, D.Motta, S.Schönert, Chem.Phys.Lett.435 (2007) 252 – 256 Developed for Indium system

26 Scintillator Summary  2000 – 2003: Development metal loaded scintillator (In, Yb, Nd, Gd)  2003: First tests Gd-loaded scintillators –Gd(acac) 3 scintillator –pH controlled carboxylate (TMHA) scintillator  2004: Optimization synthesis  2005: Double Chooz mockup  2006: Outsourcing of Gd-BDK production –Successful sublimation at company –First radiopurity measurements

27 Summer 2006: New division 3 x 24m 3 Iso-containersLarge scale production Gd-material Scintillator building 60 m³ liquids

28 Scintillator hall Dec 06Jan 07 Feb 07Mar 07

29 Summary  Double Chooz searches for the neutrino mixing angle θ 13 - Sensitivity: sin 2 (2Θ 13 ) < 0.02 - 0.03 (90% CL) (Chooz bound sin 2 (2Θ 13 ) < 0.2) - Start data taking: 2008  Main hardware contribution of MPIK: -Development + production target Gd-scintillator (10.3 m³) -Tuning + production of γ-catcher scintillator (22 m³) -Design and construction scintillator mixing system  Status -Major components ordered -Construction of scintillator hall


Download ppt "Christian Buck, MPIK Heidelberg for the Double Chooz Collaboration LAUNCH March 23rd, 2007 The Double Chooz experiment."

Similar presentations


Ads by Google