Presentation is loading. Please wait.

Presentation is loading. Please wait.

Christian Buck, MPIK Heidelberg LAUNCH 09 November, 11th 2009 The Double Chooz reactor neutrino experiment.

Similar presentations


Presentation on theme: "Christian Buck, MPIK Heidelberg LAUNCH 09 November, 11th 2009 The Double Chooz reactor neutrino experiment."— Presentation transcript:

1 Christian Buck, MPIK Heidelberg LAUNCH 09 November, 11th 2009 The Double Chooz reactor neutrino experiment

2 Neutrino oscillations Δm sol 2 ~ 7.6∙10 -5 eV 2, sin 2 (2Θ 12 ) ~ 0.85 Δm atm 2 ~ 2.4∙10 -3 eV 2, sin 2 (2Θ 23 ) ~ 1 ν2ν2 Δm atm 2 Δm sol 2 ν1ν1 ν3ν3 sin 2 Θ 13 sin 2 Θ 23 sin 2 Θ 12 νeνe νμνμ ντντ

3 Why Double Chooz ?  Improved knowledge of mixing matrix  Key experiment to unveil leptonic CP violation  Discovery potential: hint given by global analysis Fogli et al., arXiv:0905.3549 (2009)  Complementarity to beam experiments - Degeneracies + parameter correlations - Optimize future accelerator experiments  Discrimination power of 0νββ  Safeguard applications,…

4 Reactor neutrino experiments 1956: First observation (Nobel Prize 1995) 1990s: Chooz, Palo Verde (sin 2 2Θ 13 < 0.2) 2002: KamLand Δm 12, Θ 12 Reactor neutrinos:  Pure ν e - beam  Intense flux (~2% precision)  Detection: inverse β-decay  Energy: few MeV

5 Double Chooz collaboration  Spokesman: H. de Kerret (APC)  France: CEA Saclay, APC Paris, Subatech Nantes, IPHC Strasbourg  Germany: MPIK Heidelberg, TU München, EKU Tübingen, Universität Hamburg, RWTH Aachen  USA: Univ. of Alabama, Argonne Nat. Lab., Chicago, Drexel, Kansas State, LLNL, Notre Dame, Tennessee, Columbia Univ., Davis, MIT, Sandia  Spain: CIEMAT Madrid  Japan: Tohoku University, Kobe University, Tokyo Inst. of Tech., Niigata University, Tokyo Metropolitan University, Hiroshima Inst. of Tech.  England: University of Sussex  Russia: RAS Moskau, Kurchatov Institute  Brasil: CBPF Rio de Janeiro, UNICAMP

6 The Double Chooz principle

7 Survival probability G. Mention (APC) D near D far Survival probability assuming sin 2 (2Θ 13 ) = 0.2 for different Δm 13

8 Current proposals Angra Double-Chooz Kaska Daya bay RENO

9 Neutrino signal n e p 511 keV e+e+  ~ 8 MeV Gd Target: Gadolinium loaded liquid scintillator Neutrino rates: - far: ~50/day - near: ~300/day 235 U β β 236 U n  pure e source  E ν ~ MeV  E min ~ 1.8 MeV  > 10 20 /(s∙GW) Chooz: ~ 7.4 GW th prompt delayed (30 µs)

10 Background Accidentals n  ~ 8 MeV +  E  ≥ 1 MeV Gd n  ~ 8 MeV Gd fast neutrons β-n-cascades: 9 Li, 8 He Chooz data: far detector: ca. 1.4/day Long lived!

11 Detector Design TARGET (2.3m) - Acrylic vessel (8mm) - 10,3 m 3 LS (1 g/l Gd) γ-catcher (0.55m) - Acrylic vessel (12mm) - 22,6 m 3 LS Buffer (1.05m) -Steel (3 mm) - 110 m 3 oil Inner Veto (0.5m) -Steel (10 mm) - 80 m 3 LS 7m

12 Calibration systems Target GC Buffer Articulated arm z-axis system (glove box) Guide tube / wire sources LED system / multi-wavelength Buffer tube

13 Comparison with Chooz FehlerChoozDC Statistical2.8%0.4% Flux, σ1.9 %<0.1 % E/fission0.6 %<0.1 % power0.7 %<0.1 % # protons0.8 %0.2 % Det.eff.1.5 %0.5 % Σ System.2.7 %~ 0.6% Best limit: CHOOZ sin 2 (2θ 13 ) < 0.15 (90% CL) for  m 2 atm = 2.5·10 -3 eV 2 R = 1.01  2.8%(stat)  2.7%(syst) Reactor Detector

14 Sensitivity 2010 Sensitivity 2010 – 2015 (near detector starts < 2 y after far) for  m 2 atm = 2.8·10 -3 eV 2 Far detector filling early 2010!

15 Far detector installation Lab cleaning Installation Veto and Veto-PMTsInstallation Buffertank

16 PMT installation

17 Acrylic vessel installation Arrival Gamma Catcher on-siteAcrylic vessels in lab Gamma Catcher installationGamma Catcher transport

18 Status October ‘09

19 Status near detector Tunnel (155 m), 12%  Site engineering study completed  excavate 2010  r = 415 m (115 m w.e.)  Myons (Veto): 250 Hz reactors near detector Laboratory Open ramp (85 m), 14% Liquid storage Data taking: 2011

20 Scintillator development (MPIK) Requirements:  Gd-solubility > 1 g/l  Stability (5 years)  Transparency  Material compatibility  Radiopurity  Target – Gamma catcher matching (optics + density)  Large scale (multi tons) Light yield PXE conc, PPO conc.

21 Scintillator properties Target Gamma Catcher candidates Event localization by pulse shape analysis Transparency in ROI stable in 10 m range! Time [ns] Events

22  All components (40 tons) delivered to MPIK  Purifications finalized, prepare for mixing  Scintillator production starts Large scale production

23 PMT activities at MPIK  Testing / Calibration  Assembly / Installation  Implementation of data in Double Chooz software  Current upgrade: full detector segment

24 PMT calibration Calibration program:  HV scans  Single photon electron (P/V)  Transit time  Dark rate  Quantum efficiency

25 Summary  Goal of Double Chooz reactor neutrino experiment: Determination of mixing angle Θ 13 (sin 2 (2θ 13 ) ~ 0.03)  2-detector concept to reduce systematical error  Detection via inverse β-decay in Gadolinium loaded liquid scintillator  Schedule: –Data taking far detector: Spring 2010 –Near detector: end of 2011  MPIK: scintillators, PMTs, Analysis

26 Θ 13 and 0νββ Normal hierarchy: discrimination power of 0 ν ββ-exp. depends on sin 2 (2 Θ 13 ) ! M.Lindner, A.Merle, W.Rodejohann, Phys.Rev.D73:073012 (2006)

27 Positron spectrum Far/Near ratio sin 2 (2  13 )=0.12 e + spectrum Far Detetector Stat. Errors

28 Sensitivity (rate vs shape)

29 Robustness


Download ppt "Christian Buck, MPIK Heidelberg LAUNCH 09 November, 11th 2009 The Double Chooz reactor neutrino experiment."

Similar presentations


Ads by Google