Funded by: NSF-Exp. Tongmei Ma & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA Optical Zeeman Spectroscopy of ytterbium.

Slides:



Advertisements
Similar presentations
High Resolution Laser Induced Fluorescence Spectroscopic Study of RuF Timothy C. Steimle, Wilton L. Virgo Tongmei Ma The 60 th International Symposium.
Advertisements

Electronic transitions of ScP N. Wang, Y. W. Ng, K. F. Ng, and A. S.-C. Cheung Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong.
E LECTRONIC T RANSITIONS OF S CANDIUM M ONOXIDE NA WANG, Y.W. NG, and A. S-C. CHEUNG The University of Hong Kong 109 Pokfulam Road, Hong Kong SAR, P.R.China.
Funded by: DoE. Anh T. Le and Timothy C. Steimle Department of Chemistry and Biochemistry Arizona State University, Tempe,AZ * Varun Gupta, Corey.
Application of 2D fluorescence spectroscopy to Metal Containing Species Damian L. Kokkin and Timothy Steimle. Department of Chemistry and Biochemistry.
Supersonic Jet Spectroscopy on TiO 2 Millimeter-wave Spectroscopy of Titanium Monoxide and Titanium Dioxide 63 rd International Symposium on Molecular.
Terrance J. Codd*, John Stanton†, and Terry A. Miller* * The Laser Spectroscopy Facility, Department of Chemistry and Biochemistry The Ohio State University,
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
Anh T. Le and Timothy C. Steimle The electric dipole moment of Iridium monosilicide, IrSi Department of Chemistry and Biochemistry, Arizona State University,
An Acoustic Demonstration Model for CW and Pulsed Spectroscopy Experiments Torben Starck, Heinrich Mäder Institut für Physikalische Chemie Christian-Albrechts-Universität.
Stark Study of the F 4     X 4  7/2 (1,0) band of FeH Jinhai Chen and Timothy C. Steimle Dept. of Chemistry& BioChem, Arizona State University,
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
Laser Excitation and Fourier Transform Emission Spectroscopy of ScS R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ J. Gengler,
Columbus, June , 2005 Stark Effect in X 2 Y 4 Molecules: Application to Ethylene M. ROTGER, W. RABALLAND, V. BOUDON, and M. LOËTE Laboratoire de.
Laser spectroscopy of Iridium monophosphide H. F. Pang, Y. Xia, A. W. Liu and A. S-C. Cheung Department of Chemistry, The University of Hong Kong, Pokfulam.
Pump/Probe Microwave-Optical Double Resonance (PPMODR) Study of Tungsten Carbide( WC) a and Platinum Carbide(PtC) b Funded by Fang Wang, Chengbing Qin,
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
The 68 th International Symposium on Molecular Spectroscopy, June 2013 Fang Wang a, Allan Adam b and Timothy C. Steimle Dept. Chem. & BioChem., Arizona.
Optical Zeeman Spectroscopy of the (0,0) bands of the B 3  -X 3  and A 3  -X 3  Transitions of Titanium Monoxide, TiO Wilton L. Virgo, Prof. Timothy.
THE ZEEMAN EFFECT IN THE OPTICAL SPECTRUM OF MANGANESE MONOHYDRIDE: MnH. Jamie Gengler and Timothy C. Steimle Department of Chemistry and Biochemistry.
Electronic Transition of Ruthenium Monoxide Na Wang, Y. W. Ng and A. S.-C. Cheung Department of Chemistry The University of Hong Kong.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
Fang Wang & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA The 65 th International Symposium on Molecular Spectroscopy,
The 66 th International Symposium on Molecular Spectroscopy, June 2010 Fang Wang,Anh Lee and Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University,
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
66th OSU International symposium on molecular spectroscopy
Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.
Electronic transitions of Yttrium Monoxide Allan S.-C. Cheung, Y. W. Ng, Na Wang and A. Clark Department of Chemistry University of Hong Kong OSU International.
1 Zeeman patterns in FT resolved fluorescence spectra of NiH Amanda Ross, Patrick Crozet, Heather Harker and Cyril Richard Laboratoire de Spectrométrie.
The 67 th International Symposium on Molecular Spectroscopy, June 2012 Ruohan Zhang, Chengbing Qin a and Timothy C. Steimle Dept. Chem. & BioChem., Arizona.
62nd OSU International Symposium on Molecular Spectroscopy TA12 Laser Spectroscopy of Iridium Monoboride Jianjun Ye, H. F. Pang, A. M-Y. Wong, J. W-H.
Zeeman Spectroscopy of CaH Jinhai Chen, J. Gengler &T. C. Steimle, The 60 th International Symposium on Molecular Spectroscopy.
HIGH RESOLUTION LASER SPECTROSCOPY OF IRIDIUM MONOFLUORIDE AND IRIDIUM MONOCHLORIDE A.G. ADAM, L. E. DOWNIE, S. J. FORAN, A. D. GRANGER, D. FORTHOMME,
61 st Symposium on Molecular Spectroscopy June 19, 2006  -doubling in High Angular Momentum States: High Resolution Spectroscopy of CoF (X 3  i ) M.
HYPERFINE INTERACTION IN DIATOMICS AS A TOOL FOR VERIFICATION OF THEORETICAL VALUES FOR THE EFFECTIVE ELECTRIC FIELD ON ELECTRON A.N.Petrov PNPI QChem.
Optical Zeeman Spectroscopy of Iron Monohydride, FeH Jinhai Chen, Timothy C. Steimle Department of Chemistry and Biochemistry, Arizona State University.
June 20, rd International Symposium On Molecular Spectroscopy Microwave Spectrum And Structure Determination Of the CCP ( X 2 П Ω ) Radical Ming.
Triplet-Singlet Mixing in Si­ 3 : the 1 A A 2 Transition Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy 68.
STARK AND ZEEMAN EFFECT STUDY OF THE [18.6]3.5 – X(1)4.5 BAND OF URANIUM MONOFLUORIDE, UF COLAN LINTON, ALLAN G. ADAM University of New Brunswick TIMOTHY.
Optical Stark Spectroscopy and Hyperfine study of Gold Chrolride (AuCl) Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy.
63rd International Symposium on Molecular Spectroscopy, Columbus, Ohio, June 2008 The Permanent Electric Dipole Moment of Cerium and Praesodymium Monoxides,
Magnetic g e -factors and electric dipole moments of Lanthanide monoxides: PrO * Hailing Wang, and Timothy C. Steimle Department of Chemistry and Biochemistry.
HIGH RESOLUTION SPECTROSCOPY OF THE B 2 A 1 - X 2 A 1 TRANSITION OF CaCH 3 and SrCH 3 P. M. SHERIDAN, M. J. DICK, J. G. WANG AND P. F. BERNATH University.
Funded by: NSF-Exp. Timothy C. Steimle Hailing Wang & Anh Le Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA The A 2  -X 2  + Band System.
The optical spectrum of SrOH revisited: Zeeman effect, high- resolution spectroscopy and Franck- Condon factors TRUNG NGUYEN, DAMIAN L KOKKIN, TIMOTHY.
* Funded by NSF. Xiujuan Zhuang and Timothy C. Steimle* Department of Chemistry and Biochemistry Arizona State University, Tempe,AZ Neil Reilly,
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
The 69 th International Symposium on Molecular Spectroscopy, June 2014 U. Illinois Champagne-Urbanna, Timothy C. Steimle, Hailing Wang a and Ruohan Zhang.
OPTICAL-OPTICAL DOUBLE RESONANCE SPECTROSCOPY OF SrOH: THE 2 Π(000) – 2 Π(000) AND THE 2 Σ + (000) – 2 Π 1/2 (000) TRANSITIONS J.-G. WANG, P. M. SHERIDAN,
Spectroscopy of the Low- Energy States of BaO + Joshua H. Bartlett, Robert A. VanGundy, Michael C. Heaven 70 th International Symposium on Molecular Spectroscopy.
*Funded by: DoE-BES Xiujuan Zhuang, Timothy C. Steimle & Anh Le Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA* The Visible Spectrum of.
Initial Development of High Precision, High Resolution Ion Beam Spectrometer in the Near- Infrared Michael Porambo, Brian Siller, Andrew Mills, Manori.
The 61 th International Symposium on Molecular Spectroscopy. ‘06 Funded by: NSF- Exp. Phys. Chem Mag. Hyperfine Interaction in 171 YbF and 173 YbF Timothy.
1 m Tungsten Carbide Spectroscopy for electron EDM Measurement Jeongwon Lee June 23, 2011 Jinhai Chen, and Aaron E. Leanhardt Department of Physics, University.
62nd International Symposium on Molecular Spectroscopy, Columbus, Ohio, June 2007 The Permanent Electric Dipole Moment and Magnetic g-factors of Neodymium.
Spectroscopy in support of parity nonconservation measurements: the A2Π-X2Σ+(0,0) of Barium Monofluoride Anh T. Le, Sarah Frey and Timothy C. Steimle Department.
Resonant two-photon ionization spectroscopy of jet-cooled OsC
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
Timothy C. Steimle , T. Maa, S. Muscarella, and Damian Kokkin
Metastable States Arising from the Ablation of Solid Copper
Indirect Rotational Spectroscopy of HCO+
High Resolution Laser Spectroscopy of Iridium Monofluoride
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
Spectroscopic Research of Pt + NH3
Optical Zeeman Spectroscopy of Calcium Fluoride, CaF
MOLECULAR BEAM OPTICAL ZEEMAN SPECTROSCOPY OF VANADIUM MONOXIDE, VO
High-resolution Laser Spectroscopy
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
OBSERVATION OF LEVEL-SPECIFIC PREDISSOCIATION RATES IN S1 ACETYLENE
Presentation transcript:

Funded by: NSF-Exp. Tongmei Ma & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA Optical Zeeman Spectroscopy of ytterbium monoflouride, YbF Colan Linton Dept. Phys., University of New Brunswick, Frederiction, NB, Canada John Brown & Cleone Butler Physical & Theoretical Chemistry, Oxford University, Oxford, UK The 63 rd International Symposium on Molecular Spectroscopy, June 2008

The “why & how”  Why? The heavy polar molecule, YbF, has been used to set an upper limit on the electric-dipole moment of the electron, d e.  Why? Precise knowledge of the magnetic g-factors are needed for experimental measurement of d e.  How? Analysis of ultra-high resolution Optical Zeeman spectrum. Hudson et al Phys. Rev. Lett. 2002

Approach-Optical Zeeman Spectroscopy 1.Record at near natural linewidth the (0,0) A 2   - X 2  + band of YbF field-free [a]. (Last year OSU) 2.Based upon results of “1”, record and analyze the optical Zeeman effect in the low-J branch features to obtain g-factors for both (v=0) A 2  1/2 and X 2  + states of YbF. [a] : T.C. Steimle, T. Ma and C. Linton, J. Chem. Phys., 127, Well collimated molecular beam Rot.Temp.<10 K Single freq. tunable laser radiation PMT Gated photon counter Metal target Pulse valve skimmer Ablation laser Reagent & Carrier Electromagnet

-5- Electromagnet for Zeeman spectroscopy (50G-1.2kG) Mirror (3kG-4kG) NdFeB permanent magnets

Low-resolution LIF with Pulsed Dye laser O P 12 (4) Next frame

High-resolution LIF spectra of YbF: O P 12 (4) Typical branch feature of (0,0) A 2  1/2 - X 2  + band 176 YbF 174 YbF 172 YbF 170 YbF YbF G=2 G=3 171 YbF G=1(a-h) G=0 (i) ZEEMAN MEASUREMENT: 172 YbF 171 YbF,G=0 174 YbF

Field-free parameters for the v=0 of X 2  + and A 2   states of YbF [a] [a] : T.C. Steimle, T. Ma and C. Linton, J. Chem. Phys., 127,

172 YbF (0,0) A 2   -X 2  + Optical Zeeman Transitions: Selected for Zeeman cm -1 & cm -1

Zeeman Tuning of the O P 12 (2) transition for (0,0)A 2  1/2 -X 2  + of 172 YbF (v=0) X 2  + N=2 (v=0)A 2  1/2 J=0.5 I II I Last slide Note: Significant tuning Mag. Field (G)

171 YbF (0,0) A 2   -X 2  + Optical Zeeman Transitions: O P 12 (4): cm -1 ; O P 12 (3): cm -1 ; O P 12 (2) cm -1 Selected for Zeeman (next slide)

Zeeman Tuning of the O P 12 (2) transition for (0,0)A 2  1/2 -X 2  + of 171 YbF (v=0) X 2  + N=2 (v=0)A 2  1/2 J=0.5 Last slide Mag. Field (G)

Field-free Hamiltonian: X 2  + :8×8 mat.rep.,Hund’s case (a) BN 2 -DN 4 +γN·S+b F (F)I·S+c(F)×(I z S z -1/3I·S) A 2  1/2 :16×16 mat.rep.,Hund’s case (a) T 0,0 +AL z S z +1/2A D [N 2 L z S z +L z S z N 2 ]+BN 2 -DN 4 + ½(p+2q)(e -2i  J + S + +e -2i  J - S - )+aI z L z +b F I·S+c(L z S z - ½I·S)+½d(e -2i  I + S + +e -2i  I - S - ) Analysis Zeeman Hamiltonian A 2  1/2 Four possible parameters; g L, g S,g l’ & g l X2X2 Three possible parameters; g S, g l’ & g l

Analysis-cont’ Diagonalize  eigenvalues & eigenvectors Truncate matrix to include lowest 6 rot. levels 96x96 mat. rep. J=1/2 16x16 J=3/2 16x16 J=5/2 16x16 J=7/2 16x16 J=9/2 16x16 J=11/2 16x16 48x48 mat. rep. N=0 8x8 N=1 8x8 N=2 8x8 N=3 8x8 N=4 8x8 N=5 8x8 X2+X2+ A2A2

Experimental g-factors for YbF State g S g L g l g l ’ X 2  (42) NA (Fix) 0.0(Fix) A 2  1/ (Fix) (92) 0.0(Fix) (54) Rms:10.3 MHz g l (X 2  + ) fixed to Curl relationship Large > 1 > 2.002

A    (v = 0) state: Interpretation of g-factors for YbF Hund’s Case a limit  E Zee = Obs.shift is significant  E Zee (    )= 0 g L =1 & g S =2.00 Fitted g L (=1.101) >1 A    B     E~3000cm -1 Fitted g L > 1 A    B    mixing g l ’ (fitted)= Further evidence of mixing: g l ’ (Curl Relationship)= X    (v = 0) state: Fitted g S (=2.0646(64)) Significantly bigger than Difficult to rationalize-thinking about this!

Concluding remarks The magnetic tuning of the low-J features in the A 2  -X 2  + transition has been precisely determined. The magnetic g-factors in the A 2   state differ significantly from those expected for a pure “ 2  “ state. Thank You !