Presentation is loading. Please wait.

Presentation is loading. Please wait.

Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)

Similar presentations


Presentation on theme: "Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)"— Presentation transcript:

1 Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy 71th Meeting (UIUC) June 20-24, 2016

2 Gold-Sulfur Bonding Au-S bonding Au-S cites
Many reviews have appeared describing the study and use of the gold-thiol systems in molecular biology, inorganic chemistry, self-assembled monolayers and molecular electronics. Much of this work has been done to understand the interaction only on the nanoscale.

3 Previous studies on AuS(very few):
Photoelectron Spectroscopy(AuS-): Prof. Lineberger’s group, J. Phys. Chem. A, 108, 11307(2004). Prof. L.-S. Wang’s group, J. Am. Chem. Soc., 130, 9156(2008). Prof. L.-S. Wang’s group, J. Phys. Chem. Lett., 6, 637(2015). Theoretical work: Z. J. Wu, J. Phys. Chem. A, 109, 5951(2005) DFT P. Schwerdtfeger et al, J. Phys. Chem, 91, 1762(1989) Rel-HF E. Kraka et al, Croat. Chem. Acta, 82, 233(2009) DFT dipole moment Prof. Cheng, John Hopkins University Ab initio calculation on dipole moment Electronic Spectroscopy(our group): Low-resolution & High-resolution

4 Previous work(our group):
Low-resolution study on AuS: D. Kokkin; R. Zhang; T. Stemle; I. Wyse; B. Pearlman; T. Varberg, J. Phys. Chem. A, 2015, 119 (48) AuS molecular orbital(MO) diagram: Groud state: (1s)2(1p)4(1d)4(2s)2(2p*)3  X2P Excited states: (1s)2(1p)4(1d)4(2s)1(2p*)4  A2S+ (1s)2(1p)4(1d)4(2s)2(2p*)2(3s*)1 a4S, B2S-, C2D, D2S Macalester (Prof. Varberg)) ASU A B C D

5 Optical Stark Spectroscopy
Experimental Setup High-resolution spectrometer Linewidth ~30MHz Optical Stark Spectroscopy PMT Gated photon counter Laser induced fluorescence(LIF) Ablation laser(532nm) Pulse valve OCS in Argon Well collimated cold molecular beam, <15 K skimmer Stark plates Au rod CW-dye laser Source chamber Detection chamber Diffusion pump II Diffusion pump I Background pressure (10-6 torr)

6 High-resolution Spectra
B2SX2P3/2 R1(2.5) SR21(2.5)

7 Hyperfine Structure A B C D B D + C A a b c d - d c b a +/-

8 The effective Hamiltonian:
Field Free Analysis: The effective Hamiltonian: X2P3/2 : Heff= BJ2+ Hmhf (Au) + Hquad(Au) B2S-: Heff= Tv’v’’ +BN2 +(g+gDN2)N·S+Hmhf (Au) + Hquad(Au) The magnetic hyperfine Hamiltonian (not Λ-doubling dependent) Hmhf= aI·L+bI·S+cIzSz One Ω component Frosch and Foley terms Hmhf= [aLz+(b+c) Sz]Iz= [aLz+(bF+ 𝟐 𝟑 c) Sz]Iz =hWIz h3/2(2P)=a+(1/2)(bF+c), The nuclear-electric quadrupole interactions: Matrix representation Diagonalization Transition wavenumbers Energies Fitting procedure: ~200 data Fitted Parameters Observed transitions

9 Results X2P3/2 B” 0.13155(1) D”(×107) 0.64(1) h3/2” -0.00261(5) eq0Q”
Fitted field-free parameters( in cm-1) X2P3/2 B” (1) D”(×107) 0.64(1) h3/2” (5) eq0Q” 0.0027(1) Au S B2S B’ (1) D’ (×107) 0.54(1) g ’ (6) gD ’(×105) -1.18(6) bF’ (4) c’ 0.027(1) eq0Q’ 0.0062(4) T00’ (2) Large spin-rotation interaction(mixing of states) Large hyperfine interaction in the excited states RMS = cm-1

10 AuS Stark measurement Electric dipole moment(mel) Challenges:
0.2 cm-1 Electric dipole moment(mel) Previous theoretical calculation: For ground state(X2P): mel1=4.69 D; mel2=2.63 D Prediction from Prof. Cheng’s work: mel=2.44 D Q1(5.5) Q1(4.5) RQ21(12.5) QP21(2.5) Challenges: RQ21(12.5) F”=4→F’=3 Complicate and congested hyperfine features; Numerous splitting features caused by higher F values P. Schwerdtfeger et al, J. Phys. Chem, 91, 1762(1989) E. Kraka et al, Croat. Chem. Acta, 82, 233(2009)

11 Stark measurements F’ MF’ a b c d e f A B C D 3 b c d a e f MJ” F”
+3 To -3 3 b c d a e f MJ” F” -5/2 -3/2 B C D 1 A -1/2 2 3 +1/2 4 F”=4→F’=3 +3/2 +5/2

12 Results Stark shift Dipole moments 45 data RMS = 13 MHz X2P3/2
Experimental Theoretical ASU 2.161 ± 0.055 Massey1 4.69 Southern Methodist2 2.63 (unit: Debye) JHU 2.44 mel/re Gold-containing molecules mel (Debye) re(A) mel /re(D/A) AuO 2.93(8) 1.853 1.58 AuF 4.13(2) 1.924 2.15 AuS 2.16(5) 1.00 AuCl 3.69(2) 2.205 1.67 AuF 4 AuO 3 AuCl 2 AuS 1 P. Schwerdtfeger et al, J. Phys. Chem, 91, 1762(1989); E. Kraka et al, Croat. Chem. Acta, 82, 233(2009); T. Okabayashi et al, Chem. Phys. Let. 43, 223(2005); M. Gerry et al, J. Am. Chem. Soc., 122, 1560(2000), M. Gerry et al, J. Mol. Spectroc. 203, 105(2000). 1.0 2.0 3.0 4.0 Electronegativity

13 Conclusion and Future work
The high-resolution spectra of the B2S--X2P3/2 transitions of AuS have been recorded by the first time; The spectroscopic parameters included the hyperfine parameters of this stated have been determined; The electric dipole moment of AuS has been determined; The Zeeman effect of AuS will be determined in the future.

14 Acknowledgements Arizona State University John Hopkins University
Timothy C. Steimle Trung Nguyen John Hopkins University Lan Cheng

15 Thank you!


Download ppt "Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)"

Similar presentations


Ads by Google