Presentation is loading. Please wait.

Presentation is loading. Please wait.

Pump/Probe Microwave-Optical Double Resonance (PPMODR) Study of Tungsten Carbide( WC) a and Platinum Carbide(PtC) b Funded by Fang Wang, Chengbing Qin,

Similar presentations


Presentation on theme: "Pump/Probe Microwave-Optical Double Resonance (PPMODR) Study of Tungsten Carbide( WC) a and Platinum Carbide(PtC) b Funded by Fang Wang, Chengbing Qin,"— Presentation transcript:

1 Pump/Probe Microwave-Optical Double Resonance (PPMODR) Study of Tungsten Carbide( WC) a and Platinum Carbide(PtC) b Funded by Fang Wang, Chengbing Qin, Ruohan Zhang, Timothy C. Steimle Dept. Chem. & BioChem.,Arizona State University, Tempe, AZ,USA Funded by b C. Qin, R. Zhang, F. Wang, T. C. Steimle, Chemical Physics Letters, 535, 2012 a F. Wang and T.C. Steimle, J. Chem. Phys. 136, 044312 (2012). International Symposium on Molecular Spectroscopy 67 th meeting

2 Outline I.What is PPMODR? a). History & Motivation b). Concepts & Experimental Set-up a). WC (X 3  1 ) II.Examples  -doubling parameter Observe nearly equal intensity (Magnetic dipole transition VS Electric dipole transition) b). PtC (X 1  + ) Nuclear spin-rotation interaction parameter 182 W (26.3%), 183 W (14.3%), and 184 W (30.1%), 186 W (28.6%) 194 Pt(33.0%, 195 Pt(33.8%) and 196 Pt (25.2%)

3 PPMODR(History) W.J. Childs, Physics Reports, 211(1992) Review of Laser-Radiofrequency double resonance studies S.D.Rosner, T. D.Gaily, and R. A. Holt, Phys. Rev. Lett. 35, 785 (1975) Molecular-beam, laser-radiofrequency double-resonance(LRDR) technique Precise ground-state data W. Ertmer and B. Hofer, Z Phys. A 276, 9(1976) Hyperfine structure measurements of the atomic beams using the LRDR technique W.J. Childs, L.S. Goodman: Phys. Rev. A 21, 1216 (1980) Hyperfine constants of highest precision with the molecular beam using using LRDR technique W. E. Ernst and S. Kindt, Appl. Phys. B 31( 1983) A laser-Microwave double-resonance experiment has been developed

4 L I0I0 I Absorption The intensity is given by Beers Law: I=I 0 e -  LC ≈I 0 (1-  LC)Absorption≈  LC  is molecular absorption coefficient C is the concentration  ∝ f*  2 f is the fraction of the total which is in the lower of the two states.  is the transition frequency Laser or Radio-frequency Line width  v ∝  Optical spectroscopy & Microwave spectroscopy High sensitivity, resolution, selectivity PPMODR(Motivation) Pump/Probe Microwave-Optical Double Resonance High absorption High sensitivity Optical spectroscopy High sensitivity, low resolution Microwave spectroscopylow sensitivity, high resolution

5 Optical spectroscopy pump Microwave radiation skimmer Well collimated molecular beam Single freq. tunable laser radiation PMT Gated photon counter W rod or Pt rod Pulse valve Ablation laser CH4(5%) & Ar PPMODR(Concept) J” J’ h  laser Excitation J” Radio-frequency repopulate

6 Frequency Sythesizer(0~20GHz) Rubidium frequency standard homemade E-field horn antenna(3cmX0.4cm) Active Frequency multiplier 4X or 2X Magnetic sheild box FWMH: 50kHz with<<1mW power PPMODR(Experimental) Microwave Radiation Source Pump beam~200mW Probe beam (~20mW) Laser induced fluorescence(LIF)

7 Examples 1WC Electron electric dipole moment(eEDM) Measurement WC: 1 J. Lee, E.R. Meyer, R. Paudel, J.L. Bohn and A.E. Leanhardt, J. Mod. Opt. 56, 2005, (2009).  -doubling õ Δ ~1kHz 2 F. Wang and T.C. Steimle, J. Chem. Phys. 134, 201106 (2011).  -doubling õ Δ <2MHz Prediction Optical Spectroscopy - J=1 J=2 X 3  1 (v=0) - + Microwave Frequency(~60GHz) WC +  -Doubling

8 WC – Spectra with PPMODR LIF A - J=1 J=2 X 3  1 (v=0) + - + [17.6]2(v=1) +/- J=3 CBD Microwave power:10mW FWHM:400kHz 1.54MHz 2.31MHz  -doubling õ Δ =0.385(13)MHz

9 Why I mag. ≈ I elec. ? A.Magnetic dipole transition probability(X 3  1 ) B.Mix two nearly degenerate energy levels due to stray electric field (  -doublet) Possible reasons:

10 I mag. ≈ I elec. Rabi frequency  elec. = 2  ab (elec.)*Efield/h a b I mag should be small. Microwave power 10mW Area=1.0 cm 2 Transit time t=30  s  ab (elec.)=3.90D=1.30*10 -29 C m  =3.3*10 -7 J/m 3 Energy density  Rabi  t≥1 (Rabi frequency and transit time) Rabi frequency  mag.. = 2  ab (mag.)*Bfield/h A.Magnetic dipole transition probability (X 3  1 )  ab (mag.)=(g L  +g s  )  B =0.022  B =2.04*10 -25 J/T Magnetic dipole moment:  =2,  =-1, g L  +g s  Electric dipole moment: E-field=273.0V/m B-field=9.1*10 -7 T Rabi cycles

11 A.Magnetic dipole transition probability (X 3  1 ) 0.1% mixing of the nearly degenerate  -doublet levels - J=1 X 3  1 (v=0) + 1.54MHz

12 . Ψ N =C + Ψ + + C - Ψ - Basis function |  JM J > E stray ≈ 0.05V/cm Ψ N - =-0.999Ψ - -0.032Ψ + Ψ N + =0.032Ψ - -0.999Ψ + 0.032 2 *100% ≈ 0.1% B.Mix two energy levels due to stray electric field (J=1,  - doublet) How big is the stray electric field for 0.1% mixing?  =3.9D

13 Experimental Pt bonding investigation: nuclear spin-rotation interaction Examples 2PtC 195 PtCX 1  + (v=0) 3/2 J=1 J=2 1/2 3/2 5/2 Microwave Frequency(~60GHz) 195 Pt(I=1/2) J=0 1/2 F Microwave Frequency(~30GHz)

14 PtC – Spectra with PPMODR 3/2 J=1 J=2 X 1  + 1/2 3/2 5/2 A 1  5/2 J=3 7/2 LIF 195 PtC(I=1/2) A 195 PtC A C i eff =0.138(12)MHz

15 Summary PPMODR has been implemented. Precise W-doubling parameter has been determined Unusual intensity observed. Possible reasons have been addressed. Spin-rotation interaction parameter has been determined WC PtC Future Plans: AuX, ThX (X=C, F,O,S)

16


Download ppt "Pump/Probe Microwave-Optical Double Resonance (PPMODR) Study of Tungsten Carbide( WC) a and Platinum Carbide(PtC) b Funded by Fang Wang, Chengbing Qin,"

Similar presentations


Ads by Google