8 GeV Linac (Project X) and mu2e Chuck Ankenbrandt Fermilab Mu2e Collaboration Meeting August 1, 2007 My Preferred title: Linac & Recycler & Accumulator.

Slides:



Advertisements
Similar presentations
1 Proton Upgrades at Fermilab Robert Zwaska Fermilab March 12, 2007 Midwest Accelerator Physics Collaboration Meeting Indiana University Cyclotron Facility.
Advertisements

Muon Collider 2011 Workshop Jun 27-July 1 in Telluride, CO Gollwitzer & Nagaitsev presented Attending: Ankenbrandt, Lebedev, Pasquinelli, Popovic, and.
Task Force on Project X for Muon Collider Keith Gollwitzer Accelerator Division Fermilab.
Fermilab Accelerator Complex in the Near Term: Muon Physics Program Eric Prebys Accelerator Physics Center FNAL.
Nufact09-IIT 107/24/2009 Project X and a Muon Facility at Fermilab Milorad Popovic FNAL.
Re-commissioning the Recycler Storage Ring at Fermilab Martin Murphy, Fermilab Presented August 10, 2012 at SLAC National Laboratory for the Workshop on.
Eric Prebys Representing the “Mu2e Task Force”: Steve Werkema Jim Morgan Vladimir Nagaslaev Chuck Ankenbrandt Vladimir Shiltsev Ioanis Kourbanis *Mu2e-doc-1911.
Paul Derwent 30 Nov 00 1 The Fermilab Accelerator Complex o Series of presentations  Overview of FNAL Accelerator Complex  Antiprotons: Stochastic Cooling.
November 17, Chuck AnkenbrandtFermilab Making More Muons mu2e Conversion and higher intensity beams Project X Physics Workshop Chuck Ankenbrandt.
Opportunities for Experiments Based on Stored Muon Beams at Fermilab Milorad Popovic Jean-Francois Ostiguy Fermilab August, 2014.
Fermilab 1 AP Dept. Activities Report September 20, 2006Dixon Bogert AP Dept. - Activities Report Dixon Bogert - AP Dept. Meeting September 20 th, 2006.
Proton Plans at Fermilab Robert Zwaska - Fermilab Science and Engineering at Henderson- DUSEL Capstone Workshop Stony Brook University May 5, 2006 Outline.
F MI High Power Operation and Future Plans Ioanis Kourbanis (presented by Bruce Brown) HB2008 August 25, 2008.
Antiproton Source Capabilities and Issues Keith Gollwitzer & Valeri Lebedev Accelerator Division Fermilab 1.
Getting Beam to NuMI (It’s a worry!) Peter Kasper.
SNuMI (>1MW) SNuMI 1 Motivations for SNuMI The neutrino experimental program for the next decade –NOνA (long baseline νμ→νe search) –MINERνA (Main Injector.
Figure 2 gives an overview of the hardware components of the upgraded Main Injector BPM system. The figure shows 2 signal channels which produce one position.
F Project X Overview Dave McGinnis October 12, 2007.
Proton Study Meeting 4/19/05 Eric Prebys 1 Proton Plan Stage I Eric Prebys.
December 5, Chuck Ankenbrandt Fermilab Muon Collider Design Project X as a Hi-Rep-Rate Driver for a Muon Collider Chuck Ankenbrandt.
Proton Drivers & Muon Sources at Fermilab David Neuffer Fermilab.
Recent RF Development at Fermilab Weiren Chou and Akira Takagi Fermilab, U.S.A. July 7, 2003 Presentation to the FFAG03 Workshop July 7-12, 2003, KEK.
F 1 MW Proton Beam for Neutrinos Dave McGinnis AAC Meeting May 10, 2006.
F Proton Plan Eric Prebys, FNAL Accelerator Division.
Mu2e WGM 11/16/2011 R. Ray Mu2e Project manager. Review of the past few months In September it became apparent that the cost of Mu2e was well in excess.
F Project X Overview Dave McGinnis August 8, 2007.
Accelerator Issues Fermilab Antiproton Experiment Keith Gollwitzer Antiproton Source Department Accelerator Division Fermilab.
Mu2e, August 15, 2007 E Prebys 1 The Steering Group and mu2e Eric Prebys.
Fermilab Proton Driver and Muons David Johnson Fermilab Neutrino Factory Muon Collider Collaboration Meeting March 14, 2006.
Project X: 8 GeV Transfer and Injection Injection Painting Kick-off meeting Dave Johnson APC/HINS June 27, 2008 Beams-doc 3129.
1 M. Popovic If You Build It, They Will Come 8GeV CW Linac: A Staged Approach Milorad Popovic, Fermilab June 26, 2012.
Overview of the Project X RD&D Plan Sergei Nagaitsev AAC Meeting February 3, 2009.
F All Experimenters' Mtg - 2 Jun 03 Weeks in Review: 05/19/03 –06/02/03 Keith Gollwitzer – FNAL Stores and Operations Summary Standard Plots.
Proton Improvement Plan: View from the Directorate (and the DOE) Stuart Henderson PIP Meeting Jan 3, 2012.
Proton Source & Site Layout Keith Gollwitzer Accelerator Division Fermi National Accelerator Laboratory Muon Accelerator Program Review Fermilab, August.
Updated Overview of Run II Upgrade Plan Beam Instrumentation Bob Webber Run II Luminosity Upgrade Review February 2004.
Mu2e and Project X, September 3, 2008 E Prebys Background: Proton Economics in Project X Era* Assume  9mA*1ms = 5.3x10 13 protons/linac “blast”  Main.
Doug Michael Sep. 16, GeV protons 1.9 second cycle time 4x10 13 protons/pulse 0.4 MW! Single turn extraction (10  s) 4x10 20 protons/year 700.
SY120 to the Meson Test Facility (and KTeV?) - Chuck Brown – 23Feb04 – June/08 P2 P1 MI52 MCenter MTest 3 km beam line from MI52 to MT6 and MC7 2.5 km.
Preliminary MEIC Ion Beam Formation Scheme Jiquan Guo for the MEIC design study team Oct. 5,
 A model of beam line built with G4Beamline (scripting tool for GEANT4)  Simulated performance downstream of the AC Dipole for core of beam using  x.
Dave Johnson July 12, 2010 NOvA/ANU Recycler Upgrades Review Optics, Apertures, and Operations Nova-doc 4930.
What we have now – the Pbar source 1 1/23/2013 J. Morgan.
Main Injector Beam Position Monitor Upgrade: Status and Plans Rob Kutschke All Experimenters’ Meeting April 3, 2006 Beams-doc-2217-v3.
Users' Mtg - 4 Jun 08 FNAL Accelerator Complex Status Ron Moore Fermilab – AD / Tevatron Dept.
SNuMI: WBS 1.1 Booster Upgrades Eric Prebys $642K FY06$ (no contingency, no G&A) xx% contingency Main Injector & Recycler BNB NuMI Tunnel Booster Ring.
F A Fermilab Roadmap Dave McGinnis May 28, f Fermilab Roadmap - McGinnis Timelines  Divide the road map into three parallel paths  ILC - Energy.
Barrier RF Stacking Weiren Chou and Dave Wildman Fermilab, U.S.A. October 20, 2004 Presentation at the Proton Driver Session ICFA-HB2004, Bensheim, Germany,
Early Beam Injection Scheme for the Fermilab Booster: A Path for Intensity Upgrade Chandra Bhat Fermi National Accelerator Laboratory DPF2015, ANN ARBOR,
Status of Project X Keith Gollwitzer Accelerator Division Fermilab MAP Winter Meeting - March 1, 2011.
Proton Driver Design Keith Gollwitzer Fermilab February 19, 2014.
F Possible Proton Capabilities at Fermilab Dave McGinnis April 16, 2007.
Robert R. Wilson Prize Talk John Peoples April APS Meeting: February 14,
Beam time structures 1 At any particular instance of time there will be only one kind of beam in the MI. It will be either protons or anti-protons. The.
NuFACT06 Muon Source at Fermilab David Neuffer Fermilab.
LER Workshop, Oct 11, 2006Intensity Increase in the LER – T. Sen1 LHC Accelerator Research Program bnl-fnal-lbnl-slac  Motivation  Slip stacking in the.
Proton Drivers & Muon Sources at Fermilab David Neuffer Fermilab.
Protons for Neutrinos: Mid-Term and Project-X Bob Zwaska Fermilab Intensity Frontier Neutrino Working Group Meeting October 24, 2011.
F Project X: Recycler 8.9 GeV/c Extraction D. Johnson, E. Prebys, M. Martens, J. Johnstone Fermilab Accelerator Advisory Committee August 8, 2007 D. Johnson.
MI/RR Operation Status Ioanis Kourbanis August 21, 2014.
Overview of Project X ICD and RD&D Plans David Neuffer material from Paul Derwent & Sergei Nagaitsev (AAC Meeting, February 3, 2009)
Proton Driver Keith Gollwitzer Accelerator Division Fermilab MAP Collaboration Meeting June 20, 2013.
Proton Source Reference Notes for mu2e at Fermilab 1 Section 1: Compilation of parameters describing the existing Fermilab accelerator complex and the.
Proton Plan 1/10/07 E Prebys 1 Proton Plan Meeting Agenda:  Project/campaign reorganization: Prebys  Status updates: all  Booster Water Proposal: Cooper.
F Sergei Nagaitsev (FNAL) Aug Project X ICD2 Briefing.
Maximum Credible Beam Loss in the Main Injector D. Capista January 26, 2012.
Booster/Muon Campus Stage 1+ 1 GeV Nuclear/Booster-Muon Campus Stage 1 3 GeV Linac/1GeV program Stage 2 3 GeV 3-Way split Stage 2 3 GeV-8 GeV Linac Stage.
Beam Transport and Storage Rings Design Review November 17, 2010 J. Morgan.
Welcome! Robert Zwaska 23 November 2015 Workshop on Booster Performance and Enhancements.
Muon Acceleration using 8 GeV Proton Driver Linac
Presentation transcript:

8 GeV Linac (Project X) and mu2e Chuck Ankenbrandt Fermilab Mu2e Collaboration Meeting August 1, 2007 My Preferred title: Linac & Recycler & Accumulator & Debuncher: Consider the Possibilities (Like 1969 movie)

Considering the possibilities

Outline 1) Introduction/Overview 2) Linac & Recycler & Accumulator & Debuncher: Consider the Possibilities a) Review/discuss Fermilab BEAMS-DOC-2812-V: –Using an ILC-Style 8 GeV H- Linac for a Muon to Electron Conversion Experiment by Ankenbrandt, Geer, and Prebys b) Update of that note 3) Summary/Conclusions

Proton Linac (H - ) 8 GeV? H-H- t 8 GeV Proton sources

1) Introduction/Overview The question that is addressed is: How will mu2e get proton beam in the Project X era? In a note to Young-Kee Kim’s Steering Group, we (Geer, Prebys, and I) discussed that question. In this talk, I will briefly review and update that note. For completeness, a copy of that note is included in this document. Assumptions that went into that note: 1) By the time that Project X is commissioned, mu2e will already be running (concurrent with NOnA or SNuMI) using beam from Booster to Recycler to Accumulator to Debuncher. 2) Lab management will want to decommission the present Linac and Booster once Project X is commissioned. What’s new since the note was written: 1) Rumor has it that experts are pessimistic about the feasibility of slow extraction from the Recycler. If verified, that would preclude running directly off the Recycler. 2) Ways have been conceived for using more beam from Project X; variations of option 3a. (Thanks to interesting conversations with Tom Roberts and Dave Johnson) 3) Hence I’ve been thinking more recently in terms of an intensity upgrade rather than a mere continuation of mu2e at similar intensities.

Title page of the note Using an ILC-Style 8 GeV H- Linac for a Muon to Electron Conversion Experiment C. Ankenbrandt, S. Geer, and E. Prebys Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL Abstract We describe how the H- beam from an ILC-Style 8 GeV H- Linac can be collected, rebunched, and slowly extracted to provide a beam suitable for a muon to electron conversion experiment (mu2e). The scheme would permit simultaneous operation of the muon program with the future NuMI program, delivering O(1020) protons per year at 8 GeV for the mu2e experiment.

INTRODUCTION In a communication to the Fermilab long-range steering committee, D. McGinnis [1] has proposed to upgrade the Fermilab proton source by replacing the existing Linac/Booster with an ILC-Style 8 GeV H- Linac delivering 9 mA in 1 ms long pulses at 5Hz. There would be 7 Linac pulses per 1.4 sec Main Injector cycle, each pulse containing 5.7  1013 H-. The first 3 pulses would be injected via H- injection into the Recycler. The circulating 1.7  1014 protons would then be extracted in a single turn and transferred to the Main Injector to be used for the NuMI program. This would leave up to 4 Linac pulses, which could also be injected into the Recycler, available for an 8 GeV physics program. Previous notes have described how 8 GeV protons from the Booster can be transferred to the Fermilab Antiproton source [2], then rebunched and slow extracted [3] to produce a primary beam suitable for a muon to electron conversion experiment [4]. In this note we describe how protons from the McGinnis scheme [1] can be used for a muon to electron conversion experiment. We assume that the scheme described in References [2] and [3] to deliver protons from the Booster to the Accumulator for the experiment will have already been implemented by the time the new Linac is commissioned. It is also assumed that the present Linac and Booster will be decommissioned shortly after the new Linac is commissioned, so beam for the experiment would have to come from the Recycler. One way to accomplish this would be to run the experiment directly off the Recycler; the other way would be to transfer beam to the Accumulator. The two alternatives are discussed in the following paragraphs.

Directly off the Recycler (probably not feasible) Once per Main Injector cycle, one Recycler fill (5.7  1013 protons) would be used for the muon to electron conversion experiment. The protons would be rebunched into about 7 equally-spaced bunches, then slowly extracted for about 0.7 seconds from the Recycler near MI52 and transferred to the Antiproton Source enclosure via the P150 line. The beam would then be transported directly to the experiment, bypassing the Accumulator. That would require a new beamline in the Antiproton Source enclosure connecting the P150 line to the transfer line to the experiment. The other three available Linac cycles would not be used. This scenario would provide about 50 kW of beam power at 8 GeV with a duty cycle of about 50% for the muon conversion experiment. It would preclude other uses of 8 GeV beam which require the Recycler.

Recycler to Accumulator Various ways to take beam from the Recycler to the Accumulator for the experiment can be conceived. Subsequent beam processing in the Accumulator and Debuncher would then be similar to the plan that uses beam from the Booster. a) In one scheme, one complete Recycler fill is extracted in a single turn at MI52 and transmitted via P150 to the Accumulator. The beam is injected into the Accumulator using multi-turn (7-turn) transverse stacking in both transverse planes. That should be feasible because the transverse acceptances in the Accumulator are each about an order of magnitude larger than those of the Recycler. That scheme would provide about 50 kW of beam power to the experiment with a duty cycle of about 90%. The three other available Linac cycles could be used for other 8-GeV physics. b) Another method would “steal” about 1/7th of the beam destined for the Main Injector. The beam occupying one seventh of the circumference of the Recycler would be kicked out and transmitted to the Accumulator via the path described previously. No stacking would then be required in the Accumulator. That would provide about 21 kW of beam power for the experiment with a duty cycle of about 90%. It would also create a useful abort gap in the Main Injector beam. The four other cycles available from the Linac could all be used for other 8-GeV physics. c) The third method would “steal” Accumulator-length batches from each of the four Recycler fills not destined for the Main Injector. Each of those could then be separately rebunched in the Accumulator, transferred to the Debuncher, and slowly extracted over 200 msec. That would provide about 28 kW of beam power for the experiment with a duty cycle of about 50%. The rest of these four cycles could be used for other 8-GeV physics.

Update: intriguing options for more proton beam power. 1) Full 200-kW capability using transverse stacking into the Accumulator: a) Take two linac squirts at a time into the Recycler; b) Single-turn extract the whole circumference at once ; c) Transverse stack into the Accumulator; d) Form a single bunch in the Accumulator; e) Transfer to the Debuncher; f) Slow spill from the Debuncher; g) Repeat this process twice per Main Injector cycle. 2) As above, but using momentum stacking: a) Take two linac squirts at a time into the Recycler; b) Extract Accumulator-length batches at 33-ms intervals; c) Momentum stack into the Accumulator; d) Form a single bunch in the Accumulator; e) Transfer to the Debuncher; f) Slow spill from the Debuncher; g) Repeat this process twice per Main Injector cycle.

from Nagaslaev From vnagasl Sent Monday, July 30, :40 pm To Subject Accumulator apertures Chuck, I think principal limitation of the Accumulator acceptance after necessary rearrangements would be around 20 pimm unnormalized. However, one of the horizontal limitations currently is Extraction Lambertson (15 pi), and one would need to increase substantially the EKIK power in order to bring it to 20 pi. These numbers are not official. Vladimir

Summary from beam note If the proton source is upgraded with an ILC-style 8 GeV Linac, it appears there are several options that would enable an intense beam of 8 GeV protons to be provided, with the appropriate bunch structure, for a muon to electron conversion experiment.