Joint MAP D-PHASE Scientific Meeting - COST 731 mid-term seminar, 19-22 May 2008, Bologna. ErgebnissErgebniss : Long-Term Evaluation of COSMO-DE and COSMO-EU.

Slides:



Advertisements
Similar presentations
COSMO General Meeting Zürich, Sept Stefan Klink, Klaus Stephan and Christoph Schraff and Daniel.
Advertisements

COSMO Workpackage No First Results on Verification of LMK Test Runs Basing on SYNOP Data Lenz, Claus-Jürgen; Damrath, Ulrich
An optimal estimation based retrieval method adapted to SEVIRI infra-red measurements M. Stengel (1), R. Bennartz (2), J. Schulz (3), A. Walther (2,4),
COSMO General Meeting, Cracow, 15 – 19 Sept Overview on Data Assimilation WG1 Overview 1 Developments at DWD
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss The Latent Heat Nudging Scheme of COSMO EWGLAM/SRNWP Meeting,
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss WG5-Report from Switzerland: Verification of COSMO in.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Institut für Physik der Atmosphäre On the Value of.
The convection-permitting ensemble COSMO-DE-EPS From development to applications Susanne Theis, Christoph Gebhardt, Michael Buchhold Deutscher Wetterdienst.
1 / 17 Deutscher Wetterdienst Meteorological Observatory Lindenberg Richard Assmann Observatory The GCOS Reference Upper Air Network Holger Vömel GRUAN.
GPS Network for COPS German – French – Swiss Collaboration.
Verification of DWD Ulrich Damrath & Ulrich Pflüger.
Quantitative evaluation of regional precipitation forecasts for Belgium using multi-dimensional remote sensing observations (QUEST-B) Nicole van Lipzig.
Observed and modelled long-term water cloud statistics for the Murg Valley Kerstin Ebell, Susanne Crewell, Ulrich Löhnert Institute for Geophysics and.
4 th COPS Workshop, Hohenheim, 25 – 26 September 2006 Modeling and assimilation efforts at IPM in preparation of COPS Hans-Stefan Bauer, Matthias Grzeschik,
Assimilation of (satellite) cloud-information at the convective scale in an Ensemble Kalman Filter Annika Schomburg 1, Christoph Schraff 1, Africa Perianez.
Verification Precipitation verification (overestimation): a common view of the behaviour of the LM, aLMo and LAMI Francis Schubiger and Pirmin Kaufmann,
A Radar Data Assimilation Experiment for COPS IOP 10 with the WRF 3DVAR System in a Rapid Update Cycle Configuration. Thomas Schwitalla Institute of Physics.
Deutscher Wetterdienst Measurement Technology Humidity Measurements by Aircraft of the E-AMDAR Fleet TECO 2008 Axel Hoff Deutscher Wetterdienst Observing.
Priority Program SPP 1167 of the DFG Convective and Orographically Induced Precipitation Study Karlsruhe Institute of Technology Analysis of the regional.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Statistical Characteristics of High- Resolution COSMO.
Introducing the Lokal-Modell LME at the German Weather Service Jan-Peter Schulz Deutscher Wetterdienst 27 th EWGLAM and 12 th SRNWP Meeting 2005.
CAUSES (Clouds Above the United States and Errors at the Surface) "A new project with an observationally-based focus, which evaluates the role of clouds,
Slide 1EGU 2005, Vienna, Austria, April 2005Tuesday, 26 April 2005 M. Troller (1), E. Brockmann (2), D. Ineichen (2), S. Lutz (1), A. Geiger (1),
Verification and Case Studies for Urban Effects in HIRLAM Numerical Weather Forecasting A. Baklanov, A. Mahura, C. Petersen, N.W. Nielsen, B. Amstrup Danish.
Verification methods - towards a user oriented verification WG5.
Assimilating satellite cloud information with an Ensemble Kalman Filter at the convective scale Annika Schomburg, Christoph Schraff EUMETSAT fellow day,
COSMO General Meeting, Offenbach, 7 – 11 Sept Dependance of bias on initial time of forecasts 1 WG1 Overview
Non-hydrostatic Numerical Model Study on Tropical Mesoscale System During SCOUT DARWIN Campaign Wuhu Feng 1 and M.P. Chipperfield 1 IAS, School of Earth.
Latest results in verification over Poland Katarzyna Starosta, Joanna Linkowska Institute of Meteorology and Water Management, Warsaw 9th COSMO General.
Nudging Radial Velocity, OPERA, LHN for COSMO-EU COSMO GM, Sibiu, 2 September Recent developments at DWD
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz First Experience with KENDA at MeteoSwiss Daniel Leuenberger,
Data Assimilation for Very Short-Range Forecasting in COSMO WMO WS on Use of NWP for Nowcasting, Boulder, 24 – 26 Oct
Priority project Advanced interpretation COSMO General Meeting, 18. September 2006 Pierre Eckert.
Intercomparisons of Water Vapor Measurements during IHOP_2002 – Radiosonde and Dropsonde Junhong (June) Wang NCAR Atmospheric Technology Division Acknowledgement:
GPS GPS derived integrated water vapor in aLMo: impact study with COST 716 near real time data Jean-Marie Bettems, MeteoSwiss Guergana Guerova, IAP, University.
Assimilating satellite cloud information with an Ensemble Kalman Filter at the convective scale Annika Schomburg, Christoph Schraff, Hendrik Reich, Roland.
Deutscher Wetterdienst Fuzzy and standard verification for COSMO-EU and COSMO-DE Ulrich Damrath (with contributions by Ulrich Pflüger) COSMO GM Rome 2011.
Application of an adaptive radiative transfer parameterisation in a mesoscale numerical weather prediction model DWD Extramural research Annika Schomburg.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Statistics of COSMO Forecast Departures in View of.
FE 1 Ensemble Predictions Based on the Convection-Resolving Model COSMO-DE Susanne Theis Christoph Gebhardt Tanja Winterrath Volker Renner Deutscher Wetterdienst.
Kick-Off-Treffen PQP 23./24. Oktober Bonn QUEST Partnership  Susanne Crewell, Thorsten Reinhardt, University of Cologne (UC)  Jürgen Fischer, Anja Hünerbein,
MSG cloud mask initialisation in hydrostatic and non-hydrostatic NWP models Sibbo van der Veen KNMI De Bilt, The Netherlands EMS conference, September.
Validation of Satellite-derived Clear-sky Atmospheric Temperature Inversions in the Arctic Yinghui Liu 1, Jeffrey R. Key 2, Axel Schweiger 3, Jennifer.
Overview of WG5 activities and Conditional Verification Project Adriano Raspanti - WG5 Bucharest, September 2006.
Vincent N. Sakwa RSMC, Nairobi
COSMO General Meeting 2008, Krakow Modifications to the COSMO-Model Cumulus Parameterisation Scheme (Tiedtke 1989): Implementation and Testing Dimitrii.
The presence of sea ice on the ocean’s surface has a significant impact on the air-sea interactions. Compared to an open water surface the sea ice completely.
Deutscher Wetterdienst FE VERSUS 2 Priority Project Meeting Langen Use of Feedback Files for Verification at DWD Ulrich Pflüger Deutscher.
COSMO model simulations for COPS IOP 8b, 15 July 2007 Jörg Trentmann, Björn Brötz, Heini Wernli Institute for Atmospheric Physics, Johannes Gutenberg-University.
Assimilating Cloudy Infrared Brightness Temperatures in High-Resolution Numerical Models Using Ensemble Data Assimilation Jason A. Otkin and Rebecca Cintineo.
OSEs with HIRLAM and HARMONIE for EUCOS Nils Gustafsson, SMHI Sigurdur Thorsteinsson, IMO John de Vries, KNMI Roger Randriamampianina, met.no.
VERIFICATION Highligths by WG5. 2 Outlook The COSMO-Index COSI at DWD Time series of the index and its DWD 2003.
© Crown copyright Met Office Review topic – Impact of High-Resolution Data Assimilation Bruce Macpherson, Christoph Schraff, Claude Fischer EWGLAM, 2009.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Statistics of COSMO Forecast Departures in View of.
QUEST-Meeting, 14. Dez. 2007, Offenbach Das neue COSMO-EU Mikrophysikschema: Validierung von Eisgehalten Axel Seifert Deutscher Wetterdienst, Offenbach.
Introducing the Lokal-Modell LME at the German Weather Service
Studies with COSMO-DE on basic aspects in the convective scale:
Results for the COPS Region
Current verification results for COSMO-EU and COSMO-DE at DWD
Spatial and temporal distribution of integrated water vapour and liquid water path in the Murg valley observed by a scanning microwave radiometer Kneifel,
BACY = Basic Cycling A COSMO Data Assimilation Testbed for Research and Development Roland Potthast, Hendrik Reich, Christoph Schraff, Klaus.
Multiscale aspects of cloud-resolving simulations over complex terrain
Three-category ice scheme
Daniel Leuenberger1, Christian Keil2 and George Craig2
EUMETSAT fellow day, 17 March 2014, Darmstadt
Section 3: Gathering Weather Data
NWP Strategy of DWD after 2006 GF XY DWD Feb-19.
SRNWP-PEPS COSMO General Meeting September 2005
Ulrich Pflüger & Ulrich Damrath
transport equations for the scalar variances
Presentation transcript:

Joint MAP D-PHASE Scientific Meeting - COST 731 mid-term seminar, May 2008, Bologna. ErgebnissErgebniss : Long-Term Evaluation of COSMO-DE and COSMO-EU Forecasts Within General Observation Period (GOP) 2007: First Results Thorsten Reinhardt, Susanne Crewell, Christoph Selbach Universität zu Köln, Institut für Geophysik und Meteorologie, Zülpicher Str. 49a, Köln, Germany Integrated Water Vapor (IWV) Outlook Cloud Base Height (Ceiling) Cloud base height data: - from DWD ceilometer stations (yellow) Fig 5: Ceilometer network.  Regime-related model deficits Are certain model deficits connected with specific regions or weather situations?  Error structure in the hydrological cycle Are there multivariate error patterns? Cross-correlate model errors of different quantities - integrated water vapor - cloud base height - surface precipitation - cloud properties (with J. Fischer & S. Stapelberg, FU Berlin) cloud optical thickness, cloud top pressure, synthetic vs observed brightness temperatures Area-dependency in model deficits? Acknowledgements The authors are grateful to Deutscher Wetterdienst for providing model and ceilometer data and to GFZ Potsdam for providing GPS IWV data. References: Baldauf, M.; Förstner, J.; Klink, S.; Reinhardt, T.; Schraff, C.; Seifert, A.; Stephan, K. (2006): Kurze Beschreibung des Lokal-Modells Kürzestfrist LMK und seiner Datenbanken auf dem Datenserver des DWD. Deutscher Wetterdienst, Offenbach, 70 p. Guerova, G., E. Brockmann, J. Quiby, F. Schubiger, and C. Matzler (2003): Validation of NWP mesoscale models with Swiss GPS network AGNES. J. Appl. Meteorol., 42, 1, Schulz, J.-P.; Schättler, U. (2005): Kurze Beschreibung des Lokal- Modells LME und seiner Datenbanken auf dem Datenserver des DWD. Deutscher Wetterdienst, Offenbach, 65 p. Vömel, H. et al. (2007): Radiation dry bias of the Vaisala RS92 humidity sensor., J. Atmos. Oceanic Technol., 22, Fig 7: Diurnal cycle of cloud base height bias (upper panel) and RMSE (lower panel) of COSMO-DE vs ceilometer. Dec Colors indicate start times of model (see Fig. 2). Data with observations > 5000m not taken into account. Fig 6: Two-dimensional frequency distribution of COSMO- DE model vs ceilometer-observed cloud base height. Full year  Cloud base height in model not unambiguously determinable. Which threshold of fractional cloud cover to apply?  E.g. few cases (as in Dec.2007, Fig 7) with low stratus in observation (but not in simulation) can dominate monthly statistics. Cloud base height evaluation not as straightforward as IWV:  Model IWV bias mainly depends on the start time of the model  Model runs started at 12, 15, 18 (,21) UTC are significantly drier than those started at 00…. 09 UTC  COSMO-EU dryer than COSMO-DE  Diurnal cycle in COSMO-DE better than in COSMO-EU The model runs started at 12, 15, 18 (and, to some extent, 21 UTC) are significantly drier than those started at 00, 03, 06, 09 UTC. The likely reason for this behavior is that in the first group of model runs (started UC) the water vapor information from 12-UTC ascends enters while in the second group of model runs the water vapor information from 00-UTC ascends is ingested (see Fig. 4). A similar difference has been reported by Guerova etal. (2003) for a previous version of the COSMO model for Switzerland. Especially in COSMO-DE the dryer model runs (started 12, 15, 18 UTC) gain moisture with time in their first forecast hours. RMSE increases with forecast lead time, as to be expected. Model vs GPS GPS IWV data: -from GFZ Potsdam (red) -from Swiss AGNES network (blue) Radiosonde vs GPS Fig. 4: Mean difference between night-time and day-time IWV Bias (RS-GPS) for different radiosonde stations and months (of 2007). A comparison of radiosonde vs GPS IWV observations revealed that 12-UTC IWV observations by radiosonde ascents were significantly dryer than those from 00- UTC ascents (Fig. 4). The bias between radiosonde and GPS differs from station to station, but is for all stations greater at 12 UTC than at 00 UTC. The reason for this difference between 00 UTC and 12 UTC is probably a daytime dry bias of about 7% in radiosonde humidity measurements due to radiative effects (Vömel et al., 2007), whereas GPS IWV observations do not show such a dependency on time of the day. Fig 1: GPS network. Fig 2: Diurnal cycle of IWV bias (upper panel) and RMSE (lower panel) of COSMO-DE vs GPS, Feb.-Sep Colors indicate start time of model runs. Fig 3: As Fig. 2, but for COSMO-EU. COSMO-DE (2.8 km mesh size, permitting explicit convection on grid scale, see Baldauf et al, 2006) Day 1 00UTC Day 2 00UTC + 21 h forecast 7 forecasts for given target time! Day 1 3 UTC Day 1 6 UTC Day 1 9 UTC Forecasts started every 3 h: Lagged forecast ensemble Day 1 21 UTC DWD Routine Models COSMO-EU (7 km mesh size, parameterized (Tiedtke) convection, see Schulz & Schättler, 2005)