Date of download: 6/23/2016 Copyright © ASME. All rights reserved. From: Development of an Inertia-Driven Model of Sideways Fall for Detailed Study of.

Slides:



Advertisements
Similar presentations
Date of download: 5/29/2016 Copyright © ASME. All rights reserved. From: Quantification of Foreign Object Damage and Electrical Resistivity for Ceramic.
Advertisements

Date of download: 5/29/2016 Copyright © ASME. All rights reserved. From: Measurement of Strain in the Left Ventricle during Diastole with cine-MRI and.
Date of download: 5/30/2016 Copyright © ASME. All rights reserved. From: Introduction of the Element Interaction Technique for Welding Analysis and Simulation.
Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: In Vitro Quantification of Time Dependent Thrombus Size Using Magnetic Resonance.
Date of download: 6/22/2016 Copyright © ASME. All rights reserved. From: Dynamics of Flow in a Mechanical Heart Valve: The Role of Leaflet Inertia and.
Date of download: 6/23/2016 Copyright © ASME. All rights reserved. From: Fatigue and Strength Studies of Titanium 6Al–4V Fabricated by Direct Metal Laser.
Date of download: 6/26/2016 Copyright © ASME. All rights reserved. From: Numerical Study of Cerebroarterial Hemodynamic Changes Following Carotid Artery.
Date of download: 6/27/2016 Copyright © ASME. All rights reserved. From: Optical Microscopy-Aided Indentation Tests J. Eng. Mater. Technol. 2008;130(1):
Date of download: 6/28/2016 Copyright © ASME. All rights reserved. From: Mechanical Compromise of Partially Lacerated Flexor Tendons J Biomech Eng. 2012;135(1):
Date of download: 7/2/2016 Copyright © ASME. All rights reserved. From: Calibrated Coarse Grid-Finite Volume Method for the Fast Calculation of the Underhood.
Date of download: 7/6/2016 Copyright © ASME. All rights reserved. From: A New PMHS Model for Lumbar Spine Injuries During Vertical Acceleration J Biomech.
Date of download: 7/9/2016 Copyright © ASME. All rights reserved. From: Comparison of Strain Rosettes and Digital Image Correlation for Measuring Vertebral.
Date of download: 7/10/2016 Copyright © ASME. All rights reserved. From: Three-Dimensional Modeling of Supine Human and Transport System Under Whole-Body.
Date of download: 9/18/2016 Copyright © ASME. All rights reserved.
Date of download: 9/19/2016 Copyright © ASME. All rights reserved. From: Compressive Follower Load Influences Cervical Spine Kinematics and Kinetics During.
Date of download: 9/25/2017 Copyright © ASME. All rights reserved.
Date of download: 9/30/2017 Copyright © ASME. All rights reserved.
Date of download: 10/1/2017 Copyright © ASME. All rights reserved.
From: Tonic Finite Element Model of the Lower Limb
From: Measures of Bulk and Grain Strain in Deformation Processes
Date of download: 10/9/2017 Copyright © ASME. All rights reserved.
Date of download: 10/12/2017 Copyright © ASME. All rights reserved.
Date of download: 10/13/2017 Copyright © ASME. All rights reserved.
Date of download: 10/16/2017 Copyright © ASME. All rights reserved.
Date of download: 10/18/2017 Copyright © ASME. All rights reserved.
Date of download: 10/19/2017 Copyright © ASME. All rights reserved.
Date of download: 10/19/2017 Copyright © ASME. All rights reserved.
Date of download: 10/19/2017 Copyright © ASME. All rights reserved.
Date of download: 10/19/2017 Copyright © ASME. All rights reserved.
Date of download: 10/20/2017 Copyright © ASME. All rights reserved.
Date of download: 10/22/2017 Copyright © ASME. All rights reserved.
Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/28/2017 Copyright © ASME. All rights reserved.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved.
From: Hemodynamics of the Mouse Abdominal Aortic Aneurysm
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
From: Anisotropic Materials Behavior Modeling Under Shock Loading
Date of download: 11/5/2017 Copyright © ASME. All rights reserved.
Date of download: 11/6/2017 Copyright © ASME. All rights reserved.
Date of download: 11/6/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
From: Mechanics of the Mitral Valve Strut Chordae Insertion Region
Date of download: 11/16/2017 Copyright © ASME. All rights reserved.
Date of download: 12/5/2017 Copyright © ASME. All rights reserved.
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
Date of download: 12/26/2017 Copyright © ASME. All rights reserved.
Date of download: 12/28/2017 Copyright © ASME. All rights reserved.
Date of download: 12/30/2017 Copyright © ASME. All rights reserved.
Date of download: 1/1/2018 Copyright © ASME. All rights reserved.
Date of download: 1/1/2018 Copyright © ASME. All rights reserved.
Date of download: 1/2/2018 Copyright © ASME. All rights reserved.
Date of download: 1/3/2018 Copyright © ASME. All rights reserved.
Date of download: 1/7/2018 Copyright © ASME. All rights reserved.
Date of download: 11/27/2018 Copyright © ASME. All rights reserved.
Presentation transcript:

Date of download: 6/23/2016 Copyright © ASME. All rights reserved. From: Development of an Inertia-Driven Model of Sideways Fall for Detailed Study of Femur Fracture Mechanics J Biomech Eng. 2013;135(12): doi: / Schematic of the fall simulator showing the mass and spring structures that influence loading a fall to the side. meff_p+f is the effective mass of the lateral pelvis and femur. Figure Legend:

Date of download: 6/23/2016 Copyright © ASME. All rights reserved. From: Development of an Inertia-Driven Model of Sideways Fall for Detailed Study of Femur Fracture Mechanics J Biomech Eng. 2013;135(12): doi: / In previous tests on osteoligamentous pelvises an instrumented impactor was dropped on the greater trochanter at 4.5 m/s. When the impactor came into contact with the trochanter a force spike was seen before deformation of the pelvis had begun, as indicated by highlighted peak in the inset graph (adapted from Beason et. al [55] with permission). This spike was created by the acceleration of the mass of the lateral pelvis and femur. Illustrations adapted from Gray et al. [67], copyright expired. Figure Legend:

Date of download: 6/23/2016 Copyright © ASME. All rights reserved. From: Development of an Inertia-Driven Model of Sideways Fall for Detailed Study of Femur Fracture Mechanics J Biomech Eng. 2013;135(12): doi: / A photo of the fall simulator showing each element of the model Figure Legend:

Date of download: 6/23/2016 Copyright © ASME. All rights reserved. From: Development of an Inertia-Driven Model of Sideways Fall for Detailed Study of Femur Fracture Mechanics J Biomech Eng. 2013;135(12): doi: / An example response of the fall simulator plotted with human pelvis drop data [50]. The dashed line indicates the initial loading slope of the scaled volunteer data and the circle indicates the location of the peak forces. The human data was scaled by the ratio of the impact velocities. Figure Legend:

Date of download: 6/23/2016 Copyright © ASME. All rights reserved. From: Development of an Inertia-Driven Model of Sideways Fall for Detailed Study of Femur Fracture Mechanics J Biomech Eng. 2013;135(12): doi: / The averages and standard deviations of the strain errors measured for each specimen. Three specimens, 5, 8, and 10, were subjected to camera vibration, leading to incorrect DIC strain readings. Figure Legend:

Date of download: 6/23/2016 Copyright © ASME. All rights reserved. From: Development of an Inertia-Driven Model of Sideways Fall for Detailed Study of Femur Fracture Mechanics J Biomech Eng. 2013;135(12): doi: / Example data from the DIC analysis. Time versus strain plot (a) for specimen 16 shows the character and magnitude of the random noise, and an example DIC strain contour map (b) shows how the strain varied over the surface of the bone at the maximum applied load. The bone is oriented such that superior is to the left and lateral to the top. The head of the femur is in the lower left and the trochanter occupies the upper portion of the image, with the strain gauge wires visible on the right. Figure Legend: