Particle and x-ray generation by irradiation of gaseous and solid targets with a 100TW laser pulse Oswald Willi Heinrich-Heine University, Düsseldorf Germany.

Slides:



Advertisements
Similar presentations
Vulcan Front End OPCPA System
Advertisements

Relativistic Surface High Harmonic Generation
The scaling of LWFA in the ultra-relativistic blowout regime: Generation of Gev to TeV monoenergetic electron beams W.Lu, M.Tzoufras, F.S.Tsung, C. Joshi,
Particle acceleration in plasma By Prof. C. S. Liu Department of Physics, University of Maryland in collaboration with V. K. Tripathi, S. H. Chen, Y. Kuramitsu,
Ultrafast laser-driven electric field propagation on metallic surfaces Laser-driven proton beams When an intense short-pulse laser is focused down onto.
Contour plots of electron density 2D PIC in units of  [n |e|] cr wake wave breaking accelerating field laser pulse Blue:electron density green: laser.
Capture, focusing and energy selection of laser driven ion beams using conventional beam elements Morteza Aslaninejad Imperial College 13 December 2012.
05/03/2004 Measurement of Bunch Length Using Spectral Analysis of Incoherent Fluctuations Vadim Sajaev Advanced Photon Source Argonne National Laboratory.
kHz-driven high-harmonic generation from overdense plasmas
Ultrafast XUV Coherent Diffractive Imaging Xunyou GE, CEA Saclay Director : Hamed Merdji.
16 Giugno 2009 ICUIL 2010 Conference Watkins Glen, New York, USA Presented by Luca Labate* on behalf of the PLASMONX commissioning team Istituto Nazionale.
Positronium Rydberg excitation in AEGIS Physics with many positrons International Fermi School July 2009 – Varenna, Italy The experimental work on.
P.M. Paul, L.Vigroux, G. Riboulet, F.Falcoz. 2 Main Limitation in High gain Amplifier: Gain Narrowing Ti:Sa Pockels cell FWHM
SCT-2012, Novosibirsk, June 8, 2012 SHOCK WAVE PARTICLE ACCELERATION in LASER- PLASMA INTERACTION G.I.Dudnikova, T.V.Leseykina ICT SBRAS.
Generation of short pulses
James Welch October 30, FEL Commissioning Plans J. Welch, et. al. FEL Commissioning Plans J. Welch, et. al. Accelerator.
Lecture 3: Laser Wake Field Acceleration (LWFA)
KeV Harmonics from Solid Targets - The Relatvisitic Limit and Attosecond pulses Matt Zepf Queens University Belfast B.Dromey et al. Queen’s University.
Laser acceleration of electrons and ions: principles, issues, and applications Alexander Lobko Institute for Nuclear Problems, BSU Minsk Belarus.
2 Lasers: Centimeters instead of Kilometers ? If we take a Petawatt laser pulse, I=10 21 W/cm 2 then the electric field is as high as E=10 14 eV/m=100.
ENHANCED LASER-DRIVEN PROTON ACCELERATION IN MASS-LIMITED TARGETS
Laser driven particle acceleration
R & D for particle accelerators in the CLF Peter A Norreys Central Laser Facility STFC Fellow Visiting Professor, Imperial College London.
UCLA Frequency-domain interferometry diagnostic system for the detection of relativistic plasma waves Catalin V. Filip, Electrical Engineering Department,
Rainer Hörlein 9/12/ ICUIL 2010 Watkins Glen Femtosecond Probing of Solid Density Plasmas with Coherent High Harmonic Radiation Rainer Hörlein.
Pre-formed channels for laser-plasma accelerators Euroleap kickoff meeting May, 2006, Orsay, France N. C. Lopes Grupo de Lasers e Plasmas Instituto Superior.
Ultrafast particle and photon sources driven by intense laser ‐ plasma interaction Jyhpyng Wang Institute of Atomic and Molecular Sciences, Academia Sinica.
Dietrich Habs ELI Photonuclear Bucharest, Feb 2, D. Habs LMU München Fakultät f. Physik Max-Planck-Institut f. Quantenoptik A Laser-Accelerated.
Alvaro Sanchez Gonzalez Prof. Jon Marangos Prof. Jim Clarke
Efficient scaling of output pulse energy in static hollow fiber compressors X. Chen, A. Malvache, A. Ricci, A. Jullien, R. Lopez-Martens ICUIL 2010, Watkins.
Particle acceleration by circularly polarized lasers W-M Wang 1,2, Z-M Sheng 1,3, S Kawata 2, Y-T Li 1, L-M Chen 1, J Zhang 1,3 1 Institute of Physics,
Yen-Yu Chang, Li-Chung Ha, Yen-Mu Chen Chih-Hao Pai Investigator Jypyng Wang, Szu-yuan Chen, Jiunn-Yuan Lin Contributing Students Institute of Atomic and.
Ulsan National Institute of Science and Technology Toward a World-Leading University Y.K KIM.
Stable and Tuneable Laser Plasma Accelerators
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
R. Kupfer, B. Barmashenko and I. Bar
LASER-PLASMA ACCELERATORS: PRODUCTION OF HIGH-CURRENT ULTRA-SHORT e - -BEAMS, BEAM CONTROL AND RADIATION GENERATION I.Yu. Kostyukov, E.N. Nerush (IAP RAS,
Relativistically oscillating plasma surfaces : High harmonic generation and ultrafast plasma dynamics Brendan Dromey ICUIL 26 Sept – 1 Oct Watkins Glen.
Relativistic nonlinear optics in laser-plasma interaction Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National Central University,
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Energy loss of heavy ions in dense plasma Goal: To understand the interaction of heavy ions.
DaMon: a resonator to observe bunch charge/length and dark current. > Principle of detecting weakly charged bunches > Setup of resonator and electronics.
Non Double-Layer Regime: a new laser driven ion acceleration mechanism toward TeV 1.
Awake electron beam requirements ParameterBaseline Phase 2Range to check Beam Energy16 MeV MeV Energy spread (  ) 0.5 %< 0.5 % ? Bunch Length (
In-Situ Measurements of Laser-Driven Relativistic Electron Currents in Underdense Plasma M.C. Kaluza, H.-P. Schlenvoigt, B. Beleites, F. Ronneberger, and.
BESTIA – the next generation ultra-fast CO 2 laser for advanced accelerator research Igor Pogorelsky Misha Polyanskiy, Marcus Babzien, John Skaritka, Ilan.
Mirela Cerchez, ILPP, HHU, Düsseldorf Meeting GRK1203, Bad Breisig, 11th October 2007 Absorption of sub-10 fs laser pulses in overdense solid targets Mirela.
KeV Harmonics from Solid Targets - The Relatvisitic Limit and Attosecond pulses Matt Zepf Queens University Belfast B.Dromey et al. Queen’s University.
Strategies for Future Laser Plasma Accelerators J. Faure, Y. Glinec, A. Lifschitz, A. Norlin, C. Rechatin, & V.Malka Laboratoire d’Optique Appliquée ENSTA-Ecole.
Study of transient fields with Proton Imaging Toma Toncian Bad Breisig October 2008 GRK1203 TexPoint fonts used in EMF. Read the TexPoint manual before.
Munib Amin Institute for Laser and Plasma Physics Heinrich Heine University Düsseldorf Laser ion acceleration and applications A bouquet of flowers.
GRK-1203 Workshop Oelde Watching a laser pulse at work
HHG and attosecond pulses in the relativistic regime Talk by T. Baeva University of Düsseldorf, Germany Based on the work by T. Baeva, S. Gordienko, A.
Friedrich-Schiller-University Jena
1 1 Office of Science Strong Field Electrodynamics of Thin Foils S. S. Bulanov Lawrence Berkeley National Laboratory, Berkeley, CA We acknowledge support.
High Harmonic Generation from overdense plasma
New concept of light ion acceleration from low-density target
Leonida A. GIZZI Istituto Nazionale di Ottica, CNR, Pisa, Italy
V. Bagnoud PHELIX, Plasma Physics department GSI Darmstadt
Experiments at LCLS wavelength: 0.62 nm (2 keV)
8-10 June Institut Henri Poincaré, Paris, France
Studies of the energy transfer
Wakefield Accelerator
Two color FEL experiment
All-Optical Injection
L. Obst, S. Göde, M. Rehwald, F. -E. Brack, J. Branco, S. Bock, M
Short focal length target area: X-ray & ion sources and applications
High Harmonic Analysis Using a COLTRIMS Technique
AMO Early Science Capability
Presentation transcript:

Particle and x-ray generation by irradiation of gaseous and solid targets with a 100TW laser pulse Oswald Willi Heinrich-Heine University, Düsseldorf Germany 36th EPS Conference on Plasma Physics th EPS Conference on Plasma Physics 2009 Sofia 29. June 2009

Arbeitsplan für den Projektzeitraum Januar - Dezember 2009 Contributors M. Behmke, L. Gezici, B. Hidding, R. Jung, T. Königstein, A. Pipahl, J. Osterholz, G. Pretzler, A. Pukhov, M. Toncian, T. Toncian Institute of Laser- and Plasma-Physics, Heinrich-Heine University, Düsseldorf, Germany Institute of Optics and Quantum Electronics, Friedrich Schiller University Jena, Germany Institute of Nuclear Physics, Research Centre Jülich, Germany M. Heyer, O. Jäckel, M. Kübel, G. Paulus, C. Rödel, H.P. Schlenvoigt, W. Ziegler M. Büscher, A. Feyt, A. Lehrach, H. Ohm, G. Oswald, N. Raab, M. Ruzzo, M. Seltmann, Q. Zhang

Outline 100TW Laser System Experimental studies Experimental infrastructure Ionization dynamics and channel development in Helium Quasi-monoenergetic electron acceleration MeV proton spectra on thin foil targets High Harmonic generation from solid targets

0.5 TW The Düsseldorf 100 TW laser Oscillator (Femto) Booster (~10 4 gain) Booster (~10 4 gain) Grating Stretcher (~ 600 ps) Grating Stretcher (~ 600 ps) Regenerative Amplifier Power Amplifier 1 Power Amplifier 2 Power Amplifier 3 (beam 2) Power Amplifier 3 (beam 2) 15J 2 J Power Amplifier 3 (beam 1) Power Amplifier 3 (beam 1) 8 J Air Compressor Vac. Compr. 100TW Vac. Compr. 100TW Vac. Compr. 200TW Vac. Compr. 200TW 20 fs, 75 MHz 5 nJ  J 7 mJ15 mJ  J 1 mJ 30 mJ 15 mJ 300 mJ 6 J 3.2 J 120 mJ 100 nm Bandwidth 80 nm Bandwidth

Contrast of 100 TW laser pulse SEQUOIA measurement of ps contrast (February ps ps ps ps <

Schocks in Gasen bieten aufgrund ihrer Eigenschaften eine ideale Möglichkeit zur Untersuchung fundamentaler Prozesse in Laser-erzeugten Plasmen 27 meters The Laboratory

Schocks in Gasen bieten aufgrund ihrer Eigenschaften eine ideale Möglichkeit zur Untersuchung fundamentaler Prozesse in Laser-erzeugten Plasmen 27 meters The Laboratory Laser Vacuum compressor Target chambers Radiation protection Adaptive optics Pump lasers

Schocks in Gasen bieten aufgrund ihrer Eigenschaften eine ideale Möglichkeit zur Untersuchung fundamentaler Prozesse in Laser-erzeugten Plasmen 27 meters The Laboratory Probe beam line Air compressor & delay line

Schocks in Gasen bieten aufgrund ihrer Eigenschaften eine ideale Möglichkeit zur Untersuchung fundamentaler Prozesse in Laser-erzeugten Plasmen 27 meters The Laboratory 2nd main beam line Compressor Amplifier & delay line

Schocks in Gasen bieten aufgrund ihrer Eigenschaften eine ideale Möglichkeit zur Untersuchung fundamentaler Prozesse in Laser-erzeugten Plasmen 27 meters The Laboratory December 2009

Numerous diagnostics have been installed already to ensure optimal experimental conditions Online measurement of pulse energy and spectrum 3 rd order autocorrelation contrast measurement using SEQUOIA Pulse duration and shape resolved using SPIDER-technique (APE) SPIDER-signal from target chamber is used to optimize MAZZLER settings in order to control of pulse duration Full pulse-train control allows single-shot to 10-Hz application Laser and delay-lines fully computer controlled Target chamber for laser-gas interaction Adaptive mirror allows phase-front corrections Computer-controlled polarizer attenuator allows to vary the pulse energy continuously and to optimize the focus under full energy condition

Arbeitsplan für den Projektzeitraum Januar - Dezember 2009 Pump (25 fs) Probe (30 fs) High density gas jet Variable 30 fs probe pulse at 2   Shadowgraphy, interferometry and Schlieren technique applied Optical probing of plasma development in Helium induced by Düsseldorf 100-TW-Laser

1,5 mm Laser pulseElectrons Gas jet Electron energies up to 180 MeV have been observed Ionization is accompanied by rapid filamentation Shadowgram of plasma produced t = 3.5 ps

Optical probing of plasma development in Helium induced by Düsseldorf 100-TW-Laser 1,5 mm Laser pulseElectrons Gas jet Spectroscopy of light emission from channel axis perfomed Outer filaments and inner channel clearly resolved Shadowgram of plasma produced t = 83 ps t = 3.5 ps

Optical probing of plasma development in Helium induced by Düsseldorf 100-TW-Laser 1,5 mm Laser pulseElectrons Gas jet Shadowgram of plasma produced Structures are in good agreement with 2D-PIC simulations density profile Consequences on absorp- tion and conversion efficiency to be studied

A. Pukhov & J. Meyer-ter-Vehn, Appl. Phys. B74, 355 (2002) Quasi-monoenergetic electron acceleration plasma wavelength < pulse length e-e- (a 0 =5)

Experimental set-up for electron acceleration

Arbeitsplan für den Projektzeitraum Januar - Dezember 2009 Quasi mono-energetic electron spectrum ∞ Electron spectrum for a 40fs, 1.8J laser pulse, I=1.5x10 19 Wcm -2 FWHM = 2.4% Electron energy (MeV) Electron signal (a.u.) The bubble scaling predicts about 180MeV

Arbeitsplan für den Projektzeitraum Januar - Dezember 2009 Control of electron bunch direction with adaptive mirror Beamviewer recordings with an adaptive mirror. The circles denote the spectrometer aperture (5.5mrad).

Arbeitsplan für den Projektzeitraum Januar - Dezember 2009 Quasi-monoenergetic electron bunches have been observed bg corected low energy bunch bg corected high energy bunch Density: 1.1·10 19 /cm³ 60 TW E/MeV E/MeV

Arbeitsplan für den Projektzeitraum Januar - Dezember 2009 Quasi-monoenergetic electron bunches have been observed bg corected low energy bunch bg corected high energy bunch Density: 1.1·10 19 /cm³ 60 TW E/MeV E/MeV Fluorescence signal seen on Lanex screen 70 cm behind the gas jet Divergence <5mrad

Interpretation of spectra Bubble scaling predictions: see Gordienko/Pukhov, PoP 12 (2005) approx. 200 MeV for 60 fs Different scenarios for multi-spikes in spectra: 1. Decay of bubble during/at the end of interaction. Not very pronounced spikes. 2. Laser-triggered plasma wave is so strong, that electrons are also injected in wave bucket BEHIND laser pulse (e.g., see Glinec et al., PRL 98, 2007). 3. Self-modulation of laser bunch, fragmentation, more than one laser bunch fragment triggers bubble acceleration. Leads to especially pronounced spikes in electron spectra. Electron bunches separated by distances of the order of the plasma wavelength (can be only tens of fs with high densities).

MeV proton acceleration on thin foil targets TNSA mechanism thin metal foil target high intensity laser pulse electrons ions are accelerated via space charge (protons take up most of the energy) plasma sheath contamination layer

Proton Acceleration OAP f # =7 Magnetic spectrometer with B=0.5 T Protons up to 5 MeV from 0.5 µm Al I=5x10 18 W/cm 2

Thickness scaling experiments show a very high laser contrast multi-fs simulations predicts ns-contrast < Experiment 1D PIC

The Relativistic Oscillating Mirror model (ROM-harmonics) The relativistic laser pulse leads to anharmonic oscillations of the critical surface (“the mirror”) In the reflected pulse train, ultra-short harmonics are expected Roll-over: Phase modulation by oscillating mirror: Figure by Ch. Rödel et al. n>8 1/2  3 T. Baeva et al, PRE 74, (2006)

Experimental setup at Düsseldorf Figure by Ch. Rödel et al.

CWE-harmonics with and without plasma mirror using the Düsseldorf laser Laser intensity Without PM photons or 0,1 pJ in the 16 th harmonic measured With PM photons or 0,4 pJ in the 16 th harmonic measured Much more reliable signal observed with PM

First observations of ROM-harmonics without plasma mirror seen using the Düsseldorf laser Signal seen without plasma mirror at laser intensity of Without saturable absorber behind in the regenerative amplifier photon or 1 pJ in 29 th harmonic measured Traces up to the Aluminium edge at 17 nm

Relativistic surface harmonics have been observed even without plasma mirror Proof for high contrast of laser pulse Lineouts at different light block positions - SiO 2 light block

2D PIC simulation for HHG generation Electric Field Electron Density

2D PIC simulations for HHG generation x Very complex time structure up to 40   for /10  profile 

Summary Quasi-monoenergetic electron bunches up to ~ 200 MeV have been observed using supersonic gas targets MeV proton spectra observed from 300 nm foil Surface harmonics observed without plasma mirror First experiments within the test period of the Düsseldorf laser in the regime a 0 ~ 2 … 8 Ionization dynamics and channel development in Helium measured using optical probing