Claudio Piemonte Firenze, 10-13 oct. 2004 RESMDD 04 Simulation, design, and manufacturing tests of single-type column 3D silicon detectors Claudio Piemonte.

Slides:



Advertisements
Similar presentations
of Single-Type-Column 3D silicon detectors
Advertisements

Development of 3D silicon detectors at ITC-irst Claudio Piemonte ITC-irst Trento
Università degli Studi di Perugia Università degli Studi di Perugia IMM Bologna 1 Measurements and Simulations of Charge Collection Efficiency of p+/n.
Simplified Example of a LOCOS Fabrication Process
New approach to simulate radiation damage to single-crystal diamonds with SILVACO TCAD Florian Kassel, Moritz Guthoff, Anne Dabrowski, Wim de Boer.
Hartmut Sadrozinski US-ATLAS 9/22/03 Detector Technologies for an All-Semiconductor Tracker at the sLHC Hartmut F.W. Sadrozinski SCIPP, UC Santa Cruz.
SOGANG UNIVERSITY SOGANG UNIVERSITY. SEMICONDUCTOR DEVICE LAB. Power MOSFETs SD Lab. SOGANG Univ. Doohyung Cho.
GaAs radiation imaging detectors with an active layer thickness up to 1 mm. D.L.Budnitsky, O.B.Koretskaya, V.A. Novikov, L.S.Okaevich A.I.Potapov, O.P.Tolbanov,
Giulio Pellegrini 4th SILC Collaboration Meeting, Dec. 2006, Barcelona, Spain Giulio Pellegrini 4th SILC Collaboration Meeting, Dec. 2006,
Alternative technologies for Low Resistance Strip Sensors (LowR) at CNM CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) M. Ullán, V. Benítez, J. Montserrat,
Test of Pixel Sensors for the CMS experiment Amitava Roy Purdue University.
Lecture 7: IC Resistors and Capacitors
ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING
Device Fabrication Example
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Manufacturing Process I Dr. Shiyan Hu Office: EERC 518 Adapted and modified from Digital Integrated.
Digital Integrated Circuits © Prentice Hall 1995 Manufacturing Process CMOS Manufacturing Process.
20th RD50 Workshop (Bari)1 G. PellegriniInstituto de Microelectrónica de Barcelona G. Pellegrini, C. Fleta, M. Lozano, D. Quirion, Ivan Vila, F. Muñoz.
Rochester Institute of Technology - MicroE © REP/LFF 8/17/2015 Metal Gate PMOS Process EMCR201 PMOS page-1  10 Micrometer Design Rules  4 Design Layers.
Katedra Experimentálnej Fyziky Bipolar technology - the size of bipolar transistors must be reduced to meet the high-density requirement Figure illustrates.
Semiconductor detectors
CS/EE 6710 CMOS Processing. N-type Transistor + - i electrons Vds +Vgs S G D.
Fabrication of Active Matrix (STEM) Detectors
Semiconductor detectors An introduction to semiconductor detector physics as applied to particle physics.
MOHD YASIR M.Tech. I Semester Electronics Engg. Deptt. ZHCET, AMU.
IC Process Integration
SILICON DETECTORS PART I Characteristics on semiconductors.
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Manufacturing Process Dr. Shiyan Hu Office: EERC 731 Adapted and modified from Digital Integrated.
Introduction to CMOS VLSI Design CMOS Fabrication and Layout Harris, 2004 Updated by Li Chen, 2010.
Lecture 24a, Slide 1EECS40, Fall 2004Prof. White Lecture #24a OUTLINE Device isolation methods Electrical contacts to Si Mask layout conventions Process.
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #3. Diffusion  Introduction  Diffusion Process  Diffusion Mechanisms  Why Diffusion?  Diffusion Technology.
PROCESS AND DEVICE SIMULATION OF A POWER MOSFET USING SILVACO TCAD.
Lecture 23 OUTLINE The MOSFET (cont’d) Drain-induced effects Source/drain structure CMOS technology Reading: Pierret 19.1,19.2; Hu 6.10, 7.3 Optional Reading:
Silicon detector processing and technology: Part II
16 sept G.-F. Dalla BettaSCIPP Maurizio Boscardin a, Claudio Piemonte a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco Dalla Betta.
Analysis of Edge and Surface TCTs for Irradiated 3D Silicon Strip Detectors Graeme Stewart a, R. Bates a, C. Corral b, M. Fantoba b, G. Kramberger c, G.
Spencer/Ghausi, Introduction to Electronic Circuit Design, 1e, ©2003, Pearson Education, Inc. Chapter 3, slide 1 Introduction to Electronic Circuit Design.
Budapest University of Technology and Economics Department of Electron Devices Solution of the 1 st mid-term test 20 October 2009.
Low Resistance Strip Sensors – RD50 Common Project – RD50/ CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán.
CERN, November 2005 Claudio Piemonte RD50 workshop Claudio Piemonte a, Maurizio Boscardin a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco.
Simulations of 3D detectors
Haga clic para modificar el estilo de texto del patrón Infrared transparent detectors Manuel Lozano G. Pellegrini, E. Cabruja, D. Bassignana, CNM (CSIC)
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
CORPORATE INSTITUTE OF SCIENCE & TECHNOLOGY, BHOPAL DEPARTMENT OF ELECTRONICS & COMMUNICATIONS NMOS FABRICATION PROCESS - PROF. RAKESH K. JHA.
RD50 funding request Fabrication and testing of new AC coupled 3D stripixel detectors G. Pellegrini - CNM Barcelona Z. Li – BNL C. Garcia – IFIC R. Bates.
9 th “Trento” Workshop on Advanced Silicon Radiation Detectors Genova, February 26-28, 2014 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
TCT measurements with SCP slim edge strip detectors Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Milovanović 1, Marko.
Ljubljiana, 29/02/2012 G.-F. Dalla Betta Surface effects in double-sided silicon 3D sensors fabricated at FBK at FBK Gian-Franco Dalla Betta a, M. Povoli.
CMOS VLSI Fabrication.
Giulio Pellegrini 27th RD50 Workshop (CERN) 2-4 December 2015 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona 1 Status of.
6th Trento Workshop on Advanced Silicon Radiation Detectors1/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) J.P. Balbuena, G.
Simulation of new P-Type strip detectors 17th RD50 Workshop, CERN, Geneva 1/15 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona.
P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de.
Sabina Ronchin 1, Maurizio Boscardin 1, Nicola Zorzi 1, Gabriele Giacomini 1, Gian-Franco Dalla-Betta 2, Marco Povoli 3, Alberto Quaranta 2 ; Giorgio Ciaghi.
Latest news on 3D detectors IRST CNM IceMos. CNM 2 wafers fabricated Double side processing with holes not all the way through, (aka Irst) n-type bulk.
Trench detectors for enhanced charge multiplication G. Casse, D. Forshaw, M. Lozano, G. Pellegrini G. Casse, 7th Trento Meeting - 29/02 Ljubljana1.
G. PellegriniInstituto de Microelectrónica de Barcelona Status of LGAD RD50 projects at CNM28th RD50 Workshop (Torino) 1 Status of LGAD RD50 projects at.
June T-CAD Simulations of 3D Microstrip detectors a) Richard Bates b) J.P. Balbuena,C. Fleta, G. Pellegrini, M. Lozano c) U. Parzefall, M. Kohler,
New Mask and vendor for 3D detectors
Characterization and modelling of signal dynamics in 3D-DDTC detectors
First production of Ultra-Fast Silicon Detectors at FBK
Manufacturing Process I
Report from CNM activities
VLSI System Design LEC3.1 CMOS FABRICATION REVIEW
Optional Reading: Pierret 4; Hu 3
Lecture #25 OUTLINE Device isolation methods Electrical contacts to Si
Manufacturing Process I
Manufacturing Process I
Enhanced Lateral Drift (ELAD) sensors
3D sensors: status and plans for the ACTIVE project
Fabrication of 3D detectors with columnar electrodes of the same doping type Sabina Ronchina, Maurizio Boscardina, Claudio Piemontea, Alberto Pozzaa, Nicola.
Presentation transcript:

Claudio Piemonte Firenze, oct RESMDD 04 Simulation, design, and manufacturing tests of single-type column 3D silicon detectors Claudio Piemonte ITC-irst Trento (Italy)

Claudio Piemonte Firenze, oct RESMDD 04 Outline Introduction Concept of a Single-Type Column 3D detector TCAD simulations of a 3DSTC detector Fabrication tests of 3D detectors at ITC-irst Layout of the first batch Conclusion

Claudio Piemonte Firenze, oct RESMDD 04 Introduction Technological development of 3D silicon sensors has recently been started at ITC-irst (Trento-Italy). Funding support from an agreement between INFN and the Autonomous Province of Trento. ITC-irst is also inside RD50 collaboration. This talk describes the work carried out so far.

Claudio Piemonte Firenze, oct RESMDD 04 “Standard” 3D detectors - concept Proposed by Parker et al. NIMA395 (1997) n-columns p-columns wafer surface ionizing particle Short distance between electrodes: low full depletion voltage short collection distance more radiation tolerant than planar detectors!! n-type substrate

Claudio Piemonte Firenze, oct RESMDD 04 “Standard” 3D detectors - fabrication Kenney et al. IEEE TNS, vol. 46, n. 4 (1999) 1) wafer bonding support wafer detector wafer 2) n+ hole definition and etching resist oxide 3) hole doping and filling n+ polysilicon 4) p+ hole definition and etching resist 5) hole doping and filling p+ polysilicon 6) Metal deposition and definition metal Rather challenging process for mass production!

Claudio Piemonte Firenze, oct RESMDD 04 Single-Type-Column 3D detectors - concept Sketch of the detector: grid-like bulk contact ionizing particle cross-section between two electrodes n+n+ n+n+ electrons are swept away by the transversal field holes drift in the central region and diffuse towards p+ contact n-columns p-type substrate Etching and column doping performed only once Functioning:

Claudio Piemonte Firenze, oct RESMDD 04 3DSTC detectors - concept (2) Further simplification: holes not etched all through the wafer p-type substrate n + electrodes Uniform p+ layer Bulk contact is provided by a backside uniform p+ implant single side process. No need of support wafer.

Claudio Piemonte Firenze, oct RESMDD 04 TCAD Simulations - static (1) 3D simulations are necessary DEVICE3D tool by Silvaco Important to exploit the structure symmetries to minimize the region to be simulated n+n+ cell 50  m p-type substrate Wafer thickness:300  m Holes: 5  m-radius 250  m-deep

Claudio Piemonte Firenze, oct RESMDD 04 TCAD Simulations - static (2) Potential distribution (vertical cross-section) 0V -10V -5V 50  m 300  m Potential distribution (horizontal cross-section) null field regions -15V

Claudio Piemonte Firenze, oct RESMDD 04 TCAD Simulations - static (3) Potential and Electric field along a cut-line from the electrode to the center of the cell To increase the electric field strength one can act on the substrate doping concentration Na=1e12 1/cm 3 Na=5e12 1/cm 3 Na=1e13 1/cm 3 Na=1e12 1/cm 3 Na=5e12 1/cm 3 Na=1e13 1/cm 3

Claudio Piemonte Firenze, oct RESMDD 04 TCAD Simulations - dynamic (1) Current signal in response to an ionizing particle. Vertical tracks in 3 different positions Electron cloud evolution n+n+ n+n+ n+n+ n+n+ a b c

Claudio Piemonte Firenze, oct RESMDD 04 TCAD Simulations - dynamic (2) Case b. Case c. Nsub=1e12 cm -3 Nsub=5e12 cm -3 Nsub=1e13 cm -3 Nsub=1e12 cm -3 Nsub=5e12 cm -3 Nsub=1e13 cm -3 1ns 10ns Current (A) In the worst case the induced current peak is within 10ns For a hit 5  m from the electrode the peak is within 1ns.

Claudio Piemonte Firenze, oct RESMDD 04 TCAD Simulations – critical points evidenced Long low tail in the current signal due to hole movement. Simulations have shown that this effect can be strongly reduced using electrodes penetrating all through the wafer. High field at the bottom of the hole. Anyway the critical value should not be reached because of the low bias voltages required.

Claudio Piemonte Firenze, oct RESMDD 04 Fabrication process of 3DSTC detectors 1) n+ hole definition and etching resist 2) hole doping 3) Metal deposition and definition metal p-stop p+ n+ Holes are etched at CNM Barcelona. 250  m depth with a radius of ~5  m Doping by simple P diffusion or by P-doped poly-Si deposition Holes are partially filled with thermal oxide or TEOS. Contact only at the top. Single process steps have been already performed

Claudio Piemonte Firenze, oct RESMDD 04 Fabrication process - lithography as-deposited: Photoresist tends to penetrate inside the hole forming a thicker layer in these region after exposure and development: residual photoresist in the hole region Important that resist can be defined in the proximity of the hole. The resist trapped in the hole is removed after the process

Claudio Piemonte Firenze, oct RESMDD 04 Fabrication process - deposition SurfaceTopbotton Poly1m1m0.8  m0.7  m TEOS1m1m0.7  m0.6  m Poly and oxide deposition top bottom hole surface oxide poly oxide

Claudio Piemonte Firenze, oct RESMDD 04 Fabrication process – oxide growth Oxide Growth (500nm) in a 5  m diameter hole metal oxide hole top bottom

Claudio Piemonte Firenze, oct RESMDD 04 hole Aluminum does not penetrate inside the hole contacts have to be realized on the wafer surface aluminum Fabrication process – metal sputtering

Claudio Piemonte Firenze, oct RESMDD 04 Mask layout “Large” strip-like detectors Small version of strip detectors Planar and 3D test structures “Low density layout” to increase mechanical robustness of the wafer

Claudio Piemonte Firenze, oct RESMDD 04 Mask layout - example metal p-stop hole Contact opening n+n+ Strip detector

Claudio Piemonte Firenze, oct RESMDD 04 Conclusion A new type of 3D detector has been conceived which leads to a significant simplification of the process: no wafer bonding; hole etching performed only once; no hole filling. Disadvantages with respect to a standard 3D detector: more extended null-field regions; low tails on the current signal response. Single process steps have been tested; Layout completed; first production is starting.