The TRI  P programme at KVI Tests of the Standard Model at low energy Hans Wilschut KVI – Groningen Low energy tests e.g. Time reversal violation precision.

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

ISAC Physics Working Group Convenors Malcolm Butler and Barry Davids.
3224 Nuclear and Particle Physics Ruben Saakyan UCL
Status of TRI P Rotary Visit to KVI 30 januari 2004 Klaus Jungmann.
TRI  P Presentation to KVI Beleidscollege 9 May 2002 K. Jungmann.
TRI  P presentatie voor RUG College van Bestuur 17 februari 2003 Klaus Jungmann.
TRI  P presentatie voor KVI medewerkers 14 februari 2002 Klaus Jungmann Ad van den Berg Sytze Brandenburg.
: The mirror did not seem to be operating properly: A guide to CP violation C hris P arkes 12/01/2006.
Uniwersytet JagiellońskiInstytut Fizyki Jacek BierońZakład Optyki Atomowej FAMO, Jurata, IX 2006 MCDHF approach to CPT symmetries in heavy atoms.
Uniwersytet JagiellońskiInstytut Fizyki Jacek BierońZakład Optyki Atomowej Time-reversal symmetry violation in heavy atoms Kraków, 24 IV 2008.
These notes were typed in association with Physics for use with the IB Diploma Programme by Michael Dickinson For further reading and explanation see:
BASIC CONCEPTS.  Summary-1  The net nuclear charge in a nuclear species is equal to + Ze, where Z is the atomic number and e is the magnitude.
Brief History of Nuclear Physics 1896-Henri Becquerel ( ) discovered radioactivity 1911-Ernest Rutherford ( ), Hanz Geiger ( )
Lesson 8 Beta Decay. Beta-decay Beta decay is a term used to describe three types of decay in which a nuclear neutron (proton) changes into a nuclear.
 asymmetry parameter measurements in nuclear  -decay as a probe for non-Standard Model physics K.U.Leuven, Univ. Bonn, NPI Rez (Prague), ISOLDE CERN.
 : TRI  P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics TRIX: Trapped Radium Ion eXperiments Oscar Versolato.
Lesson 8 Beta Decay. Beta -decay Beta decay is a term used to describe three types of decay in which a nuclear neutron (proton) changes into a nuclear.
1 An Introduction to Ion-Optics Series of Five Lectures JINA, University of Notre Dame Sept. 30 – Dec. 9, 2005 Georg P. Berg.
NUCLEAR STRUCTURE PHENOMENOLOGICAL MODELS
Study of the Time-Reversal Violation with neutrons
Trapped Radioactive Isotopes:  icro-laboratories for fundamental Physics EDM in ground state (I=1/2) H = -(d E + μ B) · I/I m I = 1/2 m I = -1/2 2ω12ω1.
Possibility of bringing TRI  P to HIE-ISOLDE Dual magnetic Spectrometer Olof TENGBLAD ISCC Oct. 22nd 2013 There will be a presentation during the ISOLDE.
Nuclear Stability and Radioactivity AP Physics B Montwood High School R. Casao.
TRImP in-flight separator, ion catcher and RFQ cooler/buncher
Future Penning Trap Experiments at GSI / FAIR – The HITRAP and MATS Projects K. Blaum 1,2 and F. Herfurth 1 for the HITRAP and MATS Collaboration 1 GSI.
TRIµP Laser Spectroscopy: Status and Future U Dammalapati TRI  P Facility Lasers for Na  -decay Ra Spectroscopy & EDM Towards cooling of Heavy Alkaline.
1 Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University in Brno.
Status of TRI  P Programme Advisory Committee To KVI 20 November 2003 Klaus Jungmann.
Showing Radioactive decay. Review  atomic number- number of protons (if this changes the element changes)  mass number- number of protons + neutrons.
Atom and Nucleus. Radioactivity. Nuclear Energy.
31 January 2003 NuPECC Town Meeting, January/February GSI 1 Klaus Jungmann, 31 Janur 2003 NuPECC Town Report of Fundamental Interaction.
Collinear laser spectroscopy of 42g,mSc
KVI – Groningen Fundamental Interactions Klaus Jungmann RECFA Meeting, Amsterdam, 23 September 2005 AGOR.
Vector coupling of angular momentum. Total Angular Momentum L, L z, S, S z J and J z are quantized Orbital angular momentumSpin angular momentum Total.
Why Diffraction, Why Neutrons? J. A. Dura Neutron Small Angle Scattering and Reflectometry NCNR Summer School on June 26, 2006.
Nuclear Chemistry Chapter 21.
Lecture 26 Atomic Structure and Radioactivity Chapter 29.1  29.4 Outline Properties of the Atomic Nucleus Binding Energy Radioactivity and Radioactive.
Applications of polarized neutrons V.R. Skoy Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Dubna, Moscow Region, Russia.
1 Alpha Decay  Because the binding energy of the alpha particle is so large (28.3 MeV), it is often energetically favorable for a heavy nucleus to emit.
The nucleus consists of protons and neutrons, collectively called nucleons. The number of protons is the atomic number. Protons plus neutrons is the atomic.
Nuclear Chemistry The Atom The atom consists of two parts: 1. The nucleus which contains: 2. Orbiting electrons. protons neutrons Multiple nuclei is.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
A new RFQ cooler: concept, simulations and status Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics E. Traykov TRI  P project.
Neutral atom nuclear EDM Experiments Investigating Radium Lorenz Willmann KVI, Groningen ECT* Trento, June 21-25, 2004.
Electromagnetic probes MAMI, Jefferson Lab & MAX-Lab Daniel Watts University of Edinburgh.
Nuclear Chemistry. The Atom The atom consists of two parts: 1. The nucleus which contains: 2. Orbiting electrons. protons neutrons.
TAS workshop 30-31/3/2004 Aspects of recoil-ion -  correlations in atomic traps A reminder why (V-A, ?S + ?T) Energy scales  basic setup  RIMS Precision.
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh) Nuclear and Radiation Physics Why nuclear physics? Why radiation.
Fundamental interactions and symmetries at low energies what does NUPECC say…. Time-reversal violation and electric dipole moments Time-reversal violation.
May-June 2006 Fundamental Symmetries & Interactions Fundamental Symmetries and Interactions 4 th block, year 2005/2006, Rijksuniversiteit Groningen K.
Lecture 18: Total Rate for Beta Decay (etc...) 6/11/2003
June 2004Fundamental Interactions1 Klaus Jungmann ECT*, Trento, June 2004 Fundamental Interactions.
8-1 Beta Decay Neutrino Hypothesis Derivation of Spectral Shape Kurie Plots Beta Decay Rate Constant Selection Rules Transitions Majority of radioactive.
February 12-15,2003 PROCON 2003, Legnaro-Padova, Italy Jean Charles THOMAS University of Leuven / IKS, Belgium University of Bordeaux I / CENBG, France.
1.Kinetic Stability : probability that an unstable nucleus will decompose into more stable species through radioactive decay. 2.All nuclides with 84 or.
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
Precision spectroscopy of HCI in a reaction microscope Max-Planck-Institut für Kernphysik, Heidelberg C. Dimopoulou HITRAP Meeting, May 2005, Munich.
1.Kinetic Stability : probability that an unstable nucleus will decompose into more stable species through radioactive decay. 2.All nuclides with 84 or.
TRI  P project & facility TRI  P separator Status & future plans TRI  P SEPARATOR: STATUS & FUTURE TRI  P Krakow 3-6 June 2004 Andrey Rogachevskiy.
TRI  P RFQ design, simulations and tests E. Traykov TRI  P project and facility RFQ tests and design Simulations Conclusion TRI  P Group: G.P. Berg,
Correlation measurements in nuclear  -decay O.Naviliat-Cuncic Laboratoire de Physique Corpusculaire de Caen and Université de Caen Basse-Normandie NuPAC.
Atom trapping and Recoil Ion Spectrometry for  -decay (and other BSM) studies H.W. Wilschut, KVI, Groningen Or why it is easier to measure things standing.
INSTITUUT VOOR KERN- EN STRALINGSFYSICA 18-September-2002Weak Interaction Trap for CHarged particles1 Present status of WITCH experiment Valentin Kozlov.
TRIGA-SPEC: Developement platform for MATS and LaSpec at FAIR Double-beta transition Q-value measurements with TRIGA-TRAP NUSTAR Meeting Christian.
Tests of Symmetries with Neutrons and Nuclei at Very Low Energies Stephan Paul TU-München.
David Argento The nuclear underpinnings of Cosmogenic Nuclides David Argento.
Experimental Tests of the Standard Model of Weak Interactions D.Zakoucky, Nuclear Physics Institute ASCR, Rez near Prague Experimental facility WITCH at.
The WITCH Experiment 5th International Symposium on Symmetries in Subatomic Physics June 18-22, 2012 KVI, Groningen G. Ban 1, M. Breitenfeldt 2, V. De.
A single trapped Ra+ Ion to measure Atomic Parity Violation
Using ultracold neutrons to constrain the neutron electric dipole moment Tamas Budner.
Presentation transcript:

The TRI  P programme at KVI Tests of the Standard Model at low energy Hans Wilschut KVI – Groningen Low energy tests e.g. Time reversal violation precision measurements Stable  unstable nuclides nuclear & atomic physics The role of trapping nuclides sample manipulation & detection Applications and examples TRI  P developments at KVI/AGOR Trapped Radioactive Isotopes  -laboratories for fundamental Physics

Time reversal violation and the Electric Dipole Moment J any particle will do d n  em d e < em d e (SM) < em find suitable object Schiff need amplifier atomic (Z 3 ) nuclear suitable structure Consider all nuclides time d EDM violates parity and time reversal

Time reversal violation in  -decay J positron neutrino q q q JJ p p p T AGOR  nuclide & appropriate structure neutrino detection  recoil measurement

Correlations in  -decay R and D test both TRV D  most potential R  scalar and tensor (EDM, a) technique D measurements also gives a, A, b, B

“The Nucleus as micro laboratory” Fermi transitions 0 +  0 +  +  + N N’ e, Gamow-Teller 1 +  0 + Decay probability  (phase space) (nuclear structure) (weak interact) Recoil e Vector Recoil e Scalar

The role of (optical) trapping Optical trap sample isotope selective, spin manipulation point source, no substrate recoil (ion) mass spectrometry From KVI atomic physics: He 2+ + Na S. Knoop Ideal environment for precision experiments 1 a.u.=15 A  eV

Correlation experiments Setup at TRIUMF (Behr et al.) for 38m K (t 1/2 =0.93 s; 0 +  0 + )

Current value a F =0.992(8)(5) improved statistics  ? (3)(3) current limitation:  response other attempts: a GT 6 He at LPC/GANIL with Paul trap 1.5  s  6 A  eV Typical measured spectrum (Behr)

Status and Future of D coefficient  exotic ferm.  LR sym  present limit lepto quark  Susy  CKM D  Im (C V C A * ) Theory D in neutron (-0.6  1.7)  D in 19 Ne < (4  8)  Weak magnetism D WM ( 19 Ne) = 2.6  p e /p max With measurement of D(p e ) momentum dependence two orders of magnitude to be gained. KVI goes for 21 Na (3/2 +  3/2 + ; t 1/2 =22.5 s) 19 Ne (1/2 +  1/2 + ; t 1/2 =17.3 s) 20 Na(2 +   /  ; t 1/2 =0.5 s) 23 Mg (3/2 +  3/2 + ; t 1/2 =11.3 s) ( Rate of in-trap decays 10 5 /s) : :

EDM: What Object to Choose ? neutron: cold neutron source  ,... electron: paramagnetic atom nucleus: diamagenetic atom Not at AGOR 205 Tl: d = -585 d e 199 Hg: d  nucl  atom Ra: Ra/Hg=(10 >1 )(10 >3 ) Theoretical input needed

Principle of EDM measurement B E B E - =   state preparation detection precession

Washington Seattle

EDM Now and in the Future 1.6  Start TRI  P 199 Hg Radium potential d e (SM) <

Primary beam from AGOR cyclotron target position in fragment separator mode (light isotopes) target position in recoil-separator mode (e.g. Ra) beam of radioactive isotopes to decelerator and traps Combined Fragment and Recoil Separator G.P. Berg O.C. Dermois

Impact on Infrastructure Project started 2001 Program approved July 2001 Separator out for bids Magnet delivery summer 2003 Separator setup and commissioning 2003/2004 Ready for Experiments End 2004 In the mean time other preparations: Isotope Production, Gas Stopping, Cooling, RFQ, nuclear and atomic spectroscopy,... NIPNET ION CATCHER HITRAP

Atomic Physics Nuclear Physics Particle Physics “Summary” P. Dendooven M.N. Harakeh K. Jungmann R. Timmermans L. Willman H.W. Wilschut R. Morgenstern, R. Hoekstra

niks