Presentation is loading. Please wait.

Presentation is loading. Please wait.

Basic Tools and Methods of Human Geographers Observation – Information must be collected and data recorded Methods: – Fieldwork – Use of scientific instruments.

Similar presentations


Presentation on theme: "Basic Tools and Methods of Human Geographers Observation – Information must be collected and data recorded Methods: – Fieldwork – Use of scientific instruments."— Presentation transcript:

1 Basic Tools and Methods of Human Geographers Observation – Information must be collected and data recorded Methods: – Fieldwork – Use of scientific instruments – Laboratory experiments – Archival searches – Remote sensing » Aerial photography or satellite imagery designed to record data on visible, infrared, and microwave sensor systems – Visualization or Representation Written descriptions Charts Diagrams Tables – Analysis Heart of geographic research Objective analysis is to discover patterns and establish relationships so that hypotheses can be established and models be built

2

3 Remote Sensing: acquisition of data about earth’s surface from satellite images are transmitted in digital form. – Example: used with Hurricane Katrina to monitor areas of impact

4 Using today’s technology GIS: – a computer system that can capture, story, query, analyze, and display geographic data. – Primary requirement for data to be used in GIS is that the location variables are known Any variable that can be located spatially can be fed into GIS Data capture- putting the information into the system – Most time consuming – Farmed out to “cheap” labor countries

5 Layers of a GIS A geographic information system (GIS) stores information about a location in several layers. Each layer represents a different category of information.

6 Geographical Information Systems  GIS technology can render visible many aspects of geography there were previously unseen  Images that could never be drawn by hand  GIS can put places under the microscope, creating detailed new insights using huge databases  Military applications  Allows infantry commanders to calculate line of sight from tans and defensive emplacements  Allows cruise missiles to fly below enemy radar  GIS allows an enormous range of problems to be addressed  Geodemographic research  Uses census and commercial data about the populations of small districts in creating profiles for market research

7 History of the Map 2300 B.C.E. – Babylonians 800 B.C.E. – Turkish map ocean currents 500 B.C.E. – 1 st geography book commissioned Important Names: Aristotle- determined that the earth was spherical Eratosthenes- coined the word “geography” and determined the circumference of the world

8 Maps Uses – Describe data – Sources of data – Tools for analysis Representations of the world – Usually two-dimensional graphic representations that use lines and symbols to convey information or ideas about spatial relationships

9 Types of Maps Topographic Maps – Designed to represent Earth’s surface and to show permanent features such as buildings, highways, field boundaries, and political boundaries Device for representing the form of Earth’s surface is the contour – A line that connects points of equal distance above or below a zero data point, usually sea level

10 Types of Maps Reference Maps – Show common features such as boundaries, roads, and mountains Thematic Maps – Designed to represent the spatial dimensions of particular conditions, processes, or events Isopleth maps – Maps based on isolines – A line that connects places of equal data value Dot maps – Single dot or other symbol represents a specified number of occurrences of some particular phenomenon or event Choropleth map – Tonal shadings are graduated to reflect variations in numbers, frequencies, or densities

11 Thematic Maps Isoline: line represents constant quantity (ex: elevation) Proportional Symbol: size of symbol rep relative magnitude of value Dot Map: dots show specific location of occurrences Coropleth: uses color to rep data Cartogram: transform country size relative to data

12 CARTOGRAM - POPULATION

13 COROPLETH MAP

14 Proportional Symbol Map

15 Map Scale: – refers to the relationship of a feature’s size on a map to its actual size on earth – Ratio between linear distance on a map and linear distance on Earth’s surface Usually expressed in terms of corresponding lengths: – as in one centimeter equals one kilometer or as a representative fraction – Small scale maps= bigger fraction – Large scale maps = smaller fraction

16 Scale Differences: Maps of Florida The effects of scale in maps of Florida. (Scales from 1:10 million to 1:10,000)

17 Types of Scale a. Fractional - shows the numerical ratio between distances on the map on earth’s surface *example: 1:24,000 Means 1 map unit= 24, 000 units on ground b. Written -relationship between the map and earth distances in words *example: 1 inch equals 1 mile 1 st number represents map’s distance 2 nd number represents earth’s distance

18 C. Graphic -consists of a bar line marked to show distance on the earth’s surface example: *what scale you use depends on what information you are portraying!*

19 Projection -the scientific method of transferring locations on the earth’s surface to a flat map -earth’s surface is curved and not a perfect sphere. It is impossible to represent on a flat plane without distortion -Four problems: 1. the shape of an area can be distorted 2. the distance between two points may increase or decrease 3. the relative size of different areas may be altered so that one area may appear larger 4. the direction from one place to another can be distorted. talking map

20 the Solution????? Different types of projections! -Equidistant Projections -can represent distance accurately in only one direction (usually north- south) -usually provide accurate scale in perpendicular direction( equator) -most aesthetically pleasing

21 Types of Projections: Mercator: preserves direction but distorts area (higher latitudes distorted - Greenland appears huge). Also known as Conformal Fuller: maintains accurate size and shape; completely rearranges direction Robinson: distorts all 4 but minimizes errors in each (most balanced) Azimuthal: puts N or S pole at center of map…view of looking up or down at earth

22 Mercator Projection

23 Fuller Projection

24 Robinson Projection

25 Azimuthal

26 Projections Azimuthal – Designed such that compass directions are correct only from one central point – Benefits: Can be equidistant Direction is accurate – Uses: Show air-route distances from a specific location Or equal-area

27 Projections  Equal-Area or Equivalent projections (Gall-Peters Projection)  Portray areas on Earth’s surface in their true proportions (scale will be off –only true on parallels and PM)  Examples:  Eckert IV  Bartholomew’s Nordic  Mollweide  Used for thematic maps showing economic, demographic, and cultural data  Aesthetic maps  More important than conformality, equivilance, or equidistance  Examples:  Times Projection  Used in many world atlases  Robinson Projection  Used in National Geographic publications

28 Robinson Projection : -shows uninterrupted projections -useful for displaying the oceans

29 Projections Peters – Deliberate attempt to give prominence to underdeveloped countries of equatorial regions and the Southern Hemisphere Adopted by United Nations Shape gives “shock value” Cartogram – Usually small-scale thematic maps – Space is transformed according to statistical factors Largest mapping units represent greatest statistical values


Download ppt "Basic Tools and Methods of Human Geographers Observation – Information must be collected and data recorded Methods: – Fieldwork – Use of scientific instruments."

Similar presentations


Ads by Google