Presentation is loading. Please wait.

Presentation is loading. Please wait.

Flat Radio Sources. Almost every galaxy hosts a BH 99% are silent 1% are active 0.1% have jets.

Similar presentations


Presentation on theme: "Flat Radio Sources. Almost every galaxy hosts a BH 99% are silent 1% are active 0.1% have jets."— Presentation transcript:

1 Flat Radio Sources

2 Almost every galaxy hosts a BH 99% are silent 1% are active 0.1% have jets

3 Radio lobes No lobes Powerful FRII radio-galaxy Weak FRI radio-galaxy Broad emission lines No or weak lines emission lines

4 Radio-galaxies & Blazars FSRQs= Flat Spectrum Radio Quasars, with broad lines BL Lacs= less powerful, no broad lines FR II poweful radio galaxy, with lobes FR I: weak radio galaxy, no lobes 10 2 -10 3 R s

5 Radio VLBIOptical HST Superluminal motion

6 Blazars: phenomenology

7 Synchro Inverse Compton (also possible hadronic models) Radio IR Opt UV X MeV GeV Blazars: Spectral Energy Distribution

8 Fossati et al. 1998; Donato et al. 2001 The “blazar sequence” FSRQs BL Lacs LBL and HBL AGILE GLAST CT

9 Gamma-ray blazars Fermi HESS+ MAGIC EGRET: ~100 blazars Cherenkov: ~40 blazars (a few Radiogal) The Universe becomes opaque at z~0.1 at 1TeV at z~2 at 20 GeV

10 9 years of EGRET (0.1-10 GeV) After 11 months: ~700 (blazars, FSRQsand BL Lacs in equal number) A few radiogalaxies 4 NLSy1 Starburst galaxies Fermi first light, 96 hrs of integration

11 Blazars: emission models

12 Coordinated variability at different Coordinated variability at different Mkn 421 TeV PDS MECS LECS

13 BL Lacs: low power, no lines

14 Tagliaferri et al. + MAGIC, 2008 TeV BL Lacs Ferm i 1 yr 5 

15  ADAF? L< 10 -3 L Edd ?  No BLR No IR Torus Weak cooling Large 

16 Emission Models SSC model Simplest scenario: SSC model No external radiation

17 The simplest model   R Log  Log N(  )   n1 bb Log Log L( )   2 s B e   n2

18 The simplest model Log  Log N(  ) n1n1 n2n2 bb Log U syn ( ) + Log 11  ’ s Log Log L( )  22 s  22 C

19 The simplest model Log  Log N(  ) n1n1 n2n2 bb + “Klein-Nishina regime” h ’ s  b >m e c 2 Log L( ) Log  22 s   KN C Log Log U syn ( ) 11  ’ s

20 SSC model: constraining the parameters In the simplest version of the SSC model, all the parameters can be constrained by quantities available from observations: Model parameters: R B N o  b n 1 n 2  Observational parameters: s L s C L C t var  1  2 7 free parameters 7 observational quantities Tavecchio et al. 1998

21 K K2K2

22    

23 FSQRs: high power, strong broad emission lines

24 SX 10 4 s Data: Fabian+ 2001

25 Torus ~1-10 pc BLR ~0.2 pc R BLR ~ L disk  U BLR = const 1/ 2 R Torus ~ L disk  U IR = const 1/ 2 L B ~ B 2 R 2  2 c = const  B~1/(R  )

26 Torus ~1-10 pc ? ? BLR ~0.2 pc

27 Importance of  -rays If blob too close to disk, or too compact, AND if emits  -rays, then many pairs If blob too large (too distant) t var too long Then: R diss ~ 1000 R S Energy transport in inner jet must be dissipationless

28  b = 10 3  max = 10 4 R diss = 20R s  = 10 torus disk corona

29 The simplest model - 5 Log  Log N(  ) n1n1 n2n2 bb + Log Log U ext ( ) Broad line region, Disk o ’ o   Log Log F( )  22 s  22 C

30 B = 0.6 - 0.5  = 17.8 - 12.3  b = 550 - 600 Ballo et al. 2002 3C 279 EC + SSC The simplest model - 6

31 Torus ~8 pc BLR ~0.3 pc CMB A text-book jet B propto 1/R n propto 1/R 2 M=10 9 M o L disk ~L Edd z=3

32 1 1 0.1 pc SX 10 5 s

33 2 2 1 pc

34 3 3 10 pc

35 4 4 100 pc

36 5 5 1 kpc

37 6 6 10 kpc

38 7 7 100 kpc

39 5 6 4 3 2 1 7 10 kpc 1 kpc 100 pc 10 pc 1 pc 0.1 pc 0 SX 10 5 s

40 5 6 4 3 2 1 7 10 kpc 1 kpc 100 pc 10 pc 1 pc 0.1 pc 0 SX 10 5 s Peak at ~ 100-500 keV Hard X-rays and GeV: same component (t var ~0.5-1 day) Soft X-rays: contributions from larger regions, but within 10 pc (t var <2.5 months) 100 kpc

41 Fossati et al. 1998; Donato et al. 2001

42 By modeling, we find physical parameters in the comoving frame.  peak is the energy of electrons emitting at the peak of the SED EGRET blazars Ghisellini et al. 1998

43 Low power slow cooling large  peak Big power fast cooling small  peak

44  -ray emission from non-blazar AGNs Only one non–blazar AGNs is known at VHE band: the radiogalaxy M87

45 Emission region? Large scale jet Stawarz et al. 2003 Knot HST-1 (60 pc proj.) Stawarz et al. 2006 Cheung et al. 2007 Misaligned (20 deg) blazar Georganopoulos et al. 2005 Lenain et al. 2007 FT and GG 2008 BH horizon Neronov & Aharonian 2007 Rieger & Aharonian 2008

46 Core? Acciari et al. 2008

47 Ghisellini Tavecchio Chiaberge 2005 Tavecchio & Ghisellini 2008 spine layer

48 More seed photons for both   rel =  layer  spine (1-  layer  spine )  The spine sees an enhanced U rad coming from the layer  Also the layer sees an enhanced U rad coming from the spine The IC emission is enhanced wrt to the standard SSC model

49 BL Lac Radiogalaxy

50 Misaligned structured blazar jet FT and GG 2008

51 The End

52

53

54 Evidences for relativistic beaming Superluminal motions Level of Compton emission High brightness temperatures Gamma-ray emission/absorption (see below)

55 Radiogalaxy (FRI, FRII), SSRQ Blazar (BL Lac [no BL], FSRQ [BL] ) BH Broad Line Region Narrow Line Region Urry & Padovani 1995 “Unification scheme” Accretion flow/disk (T~1e4 K) Obscuring torus (hot dust) Blazar characteristics: - Compact radio core, flat or inverted spectrum - Extreme variability (amplitude and t) at all frequencies - High optical and radio polarization FSRQsbright broad (10 3 -10 4 km/s) emission lines FSRQs: bright broad (10 3 -10 4 km/s) emission lines often evidences for the “blue bump” (acc. disc) often evidences for the “blue bump” (acc. disc) BL Lacertae: weak (EW<5 Å) emission lines no signatures of accretion no signatures of accretion

56 The radio-loud zoo is large and complex Messy classification! FRI, FRII, NLRG, BLRG, FSRQ, OVV, HPQ, BL Lac objects … Idea: Jet emission is anisotropic (beaming): viewing angle + intrinsic jet (and AGN) power

57 Almost all galaxies contain a massive black hole 99% of them is (almost) silent (e.g. our Galaxy) 1% per cent is active (mostly radio-quiet AGNs): BH+accretion flow (disk): most of the emission in the UV-X-ray band 0.1% is radio loud: jets mostly visible in the radio e.g. Ferrarese & Ford 2004

58 FRII source: Cygnus A

59 FRI source: 3C31

60

61 VHE emission of M87 Light curve Spectrum t var ~ 2 days !

62 New problems: Ultra-rapid variability Aharonian et al. 2007 - H.E.S.S. Albert et al. 2007 - MAGIC Mkn 501 PKS 2155-304

63 Observed time: (R 0 /c)  2 (1-  cos  ) ~ R 0 /c ! Rees 1978 for M87

64 t var =200 s In the standard scenario t var >r g /c = 1.4 M 9 h ! Conclusion: only a small portion of the jet (and/or BH horizon) is involved in the emission (e.g. Begelman, Fabian & Rees 2008)

65 Possible alternative: VHE emission from a fast, transient “needle” (Ghisellini & Tavecchio 2008) VHE emission dominated by IC from the needle (spine) scattering the radiation of the jet (layer) A different “flavour” of the spine-layer scenario

66 GG & FT 2008 Jet - needle

67 Suggested readings Black holes in galaxies: Ferrarese & Ford 2004, astro-ph/0411247 BH in AGNs: Rees 1984, ARAA, 22, 471 Blandford 1990, Saas Fee Course 20 Krolik, “AGNs”, 1999, Princeton Univ. Press Beaming: Ghisellini 1999, astro-ph/9905181 Unification schemes: Urry & Padovani 1995, PASP, 107, 803 Emission Mechanisms: Rybicki & Lightman, 1979, Wiley & Son Jets: Begelman, Blandford & Rees, 1984, Rev. Mod. Physics, 56, 255 de Young, The physics of extragal. radio sources, 2002, Univ. Chicago Press VHE emission: Aharonian, VHE cosmic gamma radiation, 2004, World Scientific SSC: Tavecchio, Maraschi Ghisellini, 1998, ApJ, 509, 608

68 Absorption of  -rays

69 In astrophysical environments  -rays are effectively absorbed through  -> e+  e- Photon-photon pair production in a nutshell    x1x1 x2x2 threshold Rule of thumb: In isotropic rad. fields, with declining spectra:

70 Internal opacity: limit on  Observations of gamma rays provide interesting limits on the minimum value of the Doppler factor E  =10-100 GeV h =5-50 eV (UV photons) Without any correction:  (x)=   R n(1/x) 1/x ~ (1/x)  ~ x   increasing with E (x=E/mc 2 ) where n(1/x) 1/x ~ L (1/x) / R 2  (100 GeV)>>1  -rays cannot escape!!

71 Taking into account relativistic motion: 1) Intrinsic energy of gamma-ray is lower: decreasing number density of target photons 2) Density of target soft photons also strongly decreases (lower luminosity, larger radius) e.g. Ghisellini & Dondi 1996 One can find:  ‘ (x)=  (x)/  4+2  Therefore :  (x) 1/(4+2  ) Typically  5 Internal opacity: limit on 

72 Absorption inside the BLR

73 Intergalactic absorption

74 For TeV blazars the parameters also depends on the intergalactic absorption correction (Stecker et al. 1992). Values of delta up to 50 are obtained (Krawczynski et al. 2002, Konopelko et al. 2003) The correction is uncertain: deconvolved TeV spectral shape can be used to discriminate between different possibilities  ntergalactic absorption Problem and opportunity at the same time!

75 Extragalactic background light EBL measurements Mazin & Raue 2007 Starlight Dust

76 The “  -ray horizon” Coppi & Aharonian 1997 Cen A M87 Mkn 501 3C 273 Mean free path

77 Aharonian et al. 2006: even with the lowest IR background the de-absorbed spectrum is very hard (photon index=1.5). Large EBL Medium EBL Minimum EBL

78 Katarzinski et al. 2006 However, harder intrinsic spectra can be obtained assuming a power law electron distribution with a relatively large lower limit  min F ~ 1/3 The absolute limit is: Synchrotron SSC Below the corresponding freq. synchrotron and SSC spectra are very hard!

79

80 B B2B2 ~B (Klein Nishina

81 Jorstad et al. 2001

82 Superluminal motion

83 The relativistic Doppler factor   L=L’  4  ’   t=  t’/   1  cos  Special relat. Photon “compression”

84  b (Klein Nishina) bb bb b2b2

85 Absorption inside the BLR - 2

86 Constraints from 3C279 Albert at al. 2008

87 VHE emission of FSRQs 3C 279, z=0.536 Albert at al. 2008

88 The future -2 New Cherenkov Telescope Arrays: CTA, Europe AGIS, USA

89 Observed time: (R 0 /c)  2 (1-  cos  ) ~ R 0 /c ! Rees 1978 for M87

90 3C 279 Spada et al. 2001

91 Mkn 421 Guetta et al. 2004


Download ppt "Flat Radio Sources. Almost every galaxy hosts a BH 99% are silent 1% are active 0.1% have jets."

Similar presentations


Ads by Google