Presentation is loading. Please wait.

Presentation is loading. Please wait.

D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1 3 D 1 ) η c (1 1 S 0 ) η c (2 1 S 0 ) J/ψ(1 3 S 1 ) χ c0 (1 3 P 0 ) χ c1 (1 3 P 1 ) χ c2 (1 3 P 2 ) h.

Similar presentations


Presentation on theme: "D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1 3 D 1 ) η c (1 1 S 0 ) η c (2 1 S 0 ) J/ψ(1 3 S 1 ) χ c0 (1 3 P 0 ) χ c1 (1 3 P 1 ) χ c2 (1 3 P 2 ) h."— Presentation transcript:

1 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1 3 D 1 ) η c (1 1 S 0 ) η c (2 1 S 0 ) J/ψ(1 3 S 1 ) χ c0 (1 3 P 0 ) χ c1 (1 3 P 1 ) χ c2 (1 3 P 2 ) h 1c (1 1 P 1 ) D*D* ψ(3 3 S 1 ) ψ(2 3 S 1 ) χ c0 (2 3 P 0 ) χ c1 (2 3 P 1 ) χ c2 (2 3 P 2 ) h 1c (2 1 P 1 ) η c (3 1 S 0 ) PANDA and Charmonium Prospects at FAIR Klaus Peters, GSI and Ruhr-University Bochum Beijing, October 15, 2004 talk given at the 3rd Workshop on Quarkonium

2 2K. Peters - Panda and Charmonium Prospects at FAIR Overview FAIR Project Antiproton Project Storage Ring Physics at Panda Panda Experiment Other Experiments Where do we stand?

3 3K. Peters - Panda and Charmonium Prospects at FAIR Facility for Antiproton and Ion Research

4 4K. Peters - Panda and Charmonium Prospects at FAIR Facility for Antiproton and Ion Research Existing GSI Facilities Hadron Physics Plasma Physics Condensed Baryonic Matter Atomic Physics Rare Isotope Beams

5 5K. Peters - Panda and Charmonium Prospects at FAIR Facility for Antiproton and Ion Research Panda

6 6K. Peters - Panda and Charmonium Prospects at FAIR The Antiproton Facility - HESR

7 7K. Peters - Panda and Charmonium Prospects at FAIR The Antiproton Facility - HESR Antiproton production similar to CERN HESR = High Energy Storage Ring Production rate 10 7 /s P beam = 1.5 - 15 GeV/c N stored = 5 x 10 10 p Gas-Jet/Pellet/Wire Target High luminosity mode Luminosity = 2 x 10 32 cm -2 s -1 δp/p ~ 10 -4 (stochastic cooling) High resolution mode δp/p ~ 10 -5 (electron cooling) Luminosity = 10 31 cm -2 s -1

8 8K. Peters - Panda and Charmonium Prospects at FAIR QCD of bound states: Approach Increase precision measure static properties of well known states Increase the database of decays search for unusual decay modes to gain information Excite additional modes search for gluonic and radial excitations of hadrons search for gluonic excitation of the strong vacuum Put the hadrons to the limits put the hadrons in vacuum with different baryon density

9 9K. Peters - Panda and Charmonium Prospects at FAIR Panda Participating Institutes more than 300 physicists (48 institutes) from 15 countries: U Basel IHEP Beijing U Bochum U Bonn U & INFN Brescia U & INFN Catania U Cracow GSI Darmstadt TU Dresden JINR Dubna (LIT,LPP,VBLHE) U Edinburgh U Erlangen NWU Evanston U & INFN Ferrara U Frankfurt LNF-INFN Frascati U & INFN Genova U Glasgow U Gießen KVI Groningen U Helsinki IKP Jülich I + II U Katowice IMP Lanzhou U Mainz U & Politecnico & INFN Milano U Minsk TU München U Münster BINP Novosibirsk LAL Orsay U Pavia IHEP Protvino PNPI Gatchina U of Silesia U Stockholm KTH Stockholm U & INFN Torino Politechnico di Torino U Oriente, Torino U & INFN Trieste U Tübingen U & TSL Uppsala U Valencia IMEP Vienna SINS Warsaw U Warsaw Spokesperson: Ulrich Wiedner

10 10K. Peters - Panda and Charmonium Prospects at FAIR Panda Physics Overview Charmonium spectroscopy Charmed hybrids and glueballs Interaction of charmed particles with nuclei Hypernuclei Many further options Open charm decays Wide angle compton scattering Baryon-Antibaryon production CP-Violation (Λ,D)

11 11K. Peters - Panda and Charmonium Prospects at FAIR 35003520 MeV3510 CBall ev./2 MeV 100 E CM Charmonium Physics e + e - interactions: Only 1 -- states are formed Other states only by secondary decays moderate mass resolution pp reactions: All states directly formed very good mass resolution CBall E835 1000 E 835 ev./pb  c1 CBall, Edwards et al. PRL 48 (1982) 70 E835, Ambrogiani et al., PRD 62 (2000) 052002

12 12K. Peters - Panda and Charmonium Prospects at FAIR E CM Resonance Scan Measured Rate Beam Profile Resonance Cross Section small and well controlled beam momentum spread p/p is extremely important

13 13K. Peters - Panda and Charmonium Prospects at FAIR Proton-Antiproton Annihilation Productionall J PC available Formationonly selected J PC p p recoil p p

14 14K. Peters - Panda and Charmonium Prospects at FAIR p p H Formation nngnng Proton-Antiproton Annihilation Gluon rich process creates gluonic excitation directly cc requires the quarks to annihilate (no rearrangement) yield comparable to charmonium production even at low momenta large exotic content has been proven G M p p G p p Productionall J PC available only selected J PC H p p ssg/ccg M p p H nngnng M H p p

15 15K. Peters - Panda and Charmonium Prospects at FAIR Charmonium Physics with pp Expect 1-2 fb -1 (like CLEO-C) pp (>5.5 GeV/c) J/ψ10 7 /d pp (>5.5 GeV/c) χ c2 (J/ψγ10 5 /d pp (>5.5 GeV/c) η c ´(10 4 /d| rec. ? Comparison of PANDA@HESR to E835 15 GeV/cmaximum mom. instead of 9 GeV/c 10x higherLuminosity than achieved before charged tracksdetector with magnetic field 10x smallerδp/p stable conditionsdedicated high energy storage ring

16 16K. Peters - Panda and Charmonium Prospects at FAIR   Charmed Hybrids LQCD: gluonic excitations of the quark-antiquark-potential may lead to bound states -potential for one-gluon exchange -potential from excited gluon flux m Hcc ~ 4.2-4.5 GeV/c 2 Light charmed hybrids could be narrow if open charm decays are inaccessible or suppressed   important and r Breakup 3 3.5 4 1 2 R/r 0 V( R )/GeV J/ψ χcχc ψ‘ψ‘ HccHcc D

17 17K. Peters - Panda and Charmonium Prospects at FAIR LQCD ccg 1 -+ vs. cc 1 -- (J/ψ) 1 -+ m(ccg)ModelGroupReference 4390±80±200 isotropicMILC97PRD56(1997)7039 4317±150 isotropicMILC99NPB93Supp(1999)264 4287 isotropicJKM99PRL82(1999)4400 4369±37±99 anisotropicZSU02hep-lat/0206012 (1 -+,1 -- ) m(ccg)- m(cc) 1340±80±200 isotropicMILC97PRD56(1997)7039 1220±150 isotropicMILC99NPB93Supp(1999)264 1323±130 anisotropicCP-PACS99PRL82(1999)4396 1190 isotropicJKM99PRL82(1999)4400 1302±37±99 anisotropicZSU02hep-lat/0206012

18 18K. Peters - Panda and Charmonium Prospects at FAIR Charmed Hybrid Level Scheme 1 -- (0,1,2) -+ < 1 ++ (0,1,2) +- JKM, NPB 83 suppl (2000)304 and Manke, PRD57(1998)3829 L-Splitting Δm ~ 100-250 MeV/c 2 for 1 -+ to 0 +- S-Splitting Page thesis,1995 and PRD 35(1987)1668 4.14 (0 -+ ) to 4.52 GeV/c 2 (2 -+ ) consistent w/LQCD JKM, NPB 86 suppl (2000)397, PLB478(2000) 151 0 -+ 4.14 1 -+ 4.37 2 -+ 4.52 1 -- 4.48 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 0 +- 4.47 1 +- 4.70 2 +- 4.85 1 ++ 4.81 DD**

19 19K. Peters - Panda and Charmonium Prospects at FAIR 02468121510 p Momentum [GeV/c] Mass [GeV/c 2 ] Two body thresholds Molecules Gluonic Excitations qq Mesons 123456 Hybrids Hybrids+Recoil Glueball Glueball+Recoil ΛΛ ΣΣ ΞΞ ΛcΛcΣcΣcΞcΞcΛcΛcΣcΣcΞcΞc ΩcΩcΩcΩc ΩΩD DsDsDsDs qqccqqccqq nng,ssgccgccg ggg,gg light qq π,ρ,ω,f 2,K,K *c J/ψ, η c, χ cJ nng,ssgccgccg ggg Accessible Charmed Hadrons at PANDA @ GSI Other exotics with identical decay channels  same region conventional charmonium exotic charmonium

20 20K. Peters - Panda and Charmonium Prospects at FAIR Heavy Glueballs Light gg/ggg-systems are complicated to identify (mixing!) Exotic heavy glueballs m(0 +- ) = 4140 (50)(200) MeV m(2 +- ) = 4740 (70)(230) MeV Width unknown, but! nature invests more likely in mass than in momentum newest proof: double cc yield in e + e - Flavour-blindness predicts decays into charmed final states too Same run period as hybrids In addition: scan m>2 GeV/c 2 Morningstar,Peardon, PRD60(1999)34509 Morningstar,Peardon, PRD56(1997)4043 0 +- 2 +-

21 21K. Peters - Panda and Charmonium Prospects at FAIR Recent open charm discoveries The D S ± Spectrum |cs> + c.c. was not expected to reveal any surprises Potential model Old measurements New observations 00 11 00 11 22 33 DsDs Ds*Ds* D sJ * (2317) D s1 m [GeV/c 2 ] D0KD0K D*K D sJ (2458) D s2 * JPJP

22 22K. Peters - Panda and Charmonium Prospects at FAIR D s[J] [*]± Pairproduction in pp Annihilation Associated Pair m/MeV/c 2 JPJP Channel (+cc)Final State D s (1968.5) 3937.00 +,1 -,2 +,3 -,4 + Ds+Ds-Ds+Ds- 2K - 2K +  +  - D s (1968.5)D s * (2112.4)4080.90 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D s - )2K - 2K +  +  -  D s * (2112.4) 4224.80 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D s - )2K - 2K +  +  -  D s (1968.5)D sJ * (2317.5)4286.00 -,1 +,2 -,3 +,4 - D s + (D s -  0 )2K - 2K +  +  -  0 D s (1968.5)D sJ (2458.5)4427.00 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + ((D s - ) 0 )2K - 2K +  +  -  0  D s * (2112.4)D sJ * (2317.5)4429.90 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D s -  0 )2K - 2K +  +  -  0  D s (1968.5)D s1 (2535.4)4503.90 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D *- K 0 ) 2K - K + K S  + 2 - ( 0 ) D s (1968.5)D sJ * (2572.4)4540.90 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D 0 K - ) 2K - 2K +  +  - ( 0 ) D s * (2112.4)D sJ (2458.5)4570.90 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )((D s - ) 0 )2K - 2K +  +  -  0  D sJ * (2317.5) 4635.00 +,1 -,2 +,3 -,4 + (D s +  0 )(D s -  0 )2K - 2K +  +  - 2 0 D s * (2112.4)D s1 (2535.4)4647.90 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D *- K 0 )2K - K + K S  + 2 - ( 0 ) D s * (2112.4)D sJ * (2572.4)4684.40 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D 0 K - )2K - 2K +  +  - ( 0 ) D s (1968.5)D 1 * (2770)4738.50 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D s -  +  - )2K - 2K + 2 + 2 - D sJ * (2317.5)D sJ (2458.5)4776.00 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s +  0 )((D s - ) 0 )2K - 2K +  +  - 2 0  D s (1968.5)D 2 (2870)4838.50 +,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + ((D s - ) +  - )2K - 2K + 2 + 2 -  D sJ * (2317.5)D s1 (2535.4)4852.90 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s +  0 )(D *- K 0 )2K - K + K S  + 2 - (1-2) 0 D s * (2112.4)D 1 * (2770)4882.40 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D s -  +  - )2K - 2K + 2 + 2 -  D sJ * (2317.5)D sJ * (2572.4)4889.90 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s +  0 )(D 0 K - )2K - 2K +  +  - (1-2) 0 D sJ (2458.5) 4917.00 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + ((D s + ) 0 )((D s - ) 0 )2K - 2K +  +  - 2 0  D s * (2112.4)D 2 (2870)4982.40 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )((D s - ) +  - )2K - 2K + 2 + 2 -  D sJ (2458.5)D s1 (2535.4)4993.90 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + ((D s + ) 0 )(D *- K 0 )2K - K + K S  + 2 - (1-2) 0  D sJ (2458.5)D sJ * (2572.4)5030.90 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + ((D s + ) 0 )(D 0 K - )2K - 2K +  +  - (1-2) 0  D s1 (2535.4) 5070.80 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D *+ K 0 )(D *- K 0 )K - K + 2K S 2 + 2 - (0-2) 0

23 23K. Peters - Panda and Charmonium Prospects at FAIR D s[J] [*]± Pairproduction in pp Annihilation Associated Pair m/MeV/c 2 JPJP Channel (+cc)Final State D s (1968.5) 3937.00 +,1 -,2 +,3 -,4 + Ds+Ds-Ds+Ds- 2K - 2K +  +  - D s (1968.5)D s * (2112.4)4080.90 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D s - )2K - 2K +  +  -  D s * (2112.4) 4224.80 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D s - )2K - 2K +  +  -  D s (1968.5)D sJ * (2317.5)4286.00 -,1 +,2 -,3 +,4 - D s + (D s -  0 )2K - 2K +  +  -  0 D s (1968.5)D sJ (2458.5)4427.00 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + ((D s - ) 0 )2K - 2K +  +  -  0  D s * (2112.4)D sJ * (2317.5)4429.90 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D s -  0 )2K - 2K +  +  -  0  D s (1968.5)D s1 (2535.4)4503.90 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D *- K 0 ) 2K - K + K S  + 2 - ( 0 ) D s (1968.5)D sJ * (2572.4)4540.90 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D 0 K - ) 2K - 2K +  +  - ( 0 ) D s * (2112.4)D sJ (2458.5)4570.90 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )((D s - ) 0 )2K - 2K +  +  -  0  D sJ * (2317.5) 4635.00 +,1 -,2 +,3 -,4 + (D s +  0 )(D s -  0 )2K - 2K +  +  - 2 0 D s * (2112.4)D s1 (2535.4)4647.90 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D *- K 0 )2K - K + K S  + 2 - ( 0 ) D s * (2112.4)D sJ * (2572.4)4684.40 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D 0 K - )2K - 2K +  +  - ( 0 ) D s (1968.5)D 1 * (2770)4738.50 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D s -  +  - )2K - 2K + 2 + 2 - D sJ * (2317.5)D sJ (2458.5)4776.00 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s +  0 )((D s - ) 0 )2K - 2K +  +  - 2 0  D s (1968.5)D 2 (2870)4838.50 +,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + ((D s - ) +  - )2K - 2K + 2 + 2 -  D sJ * (2317.5)D s1 (2535.4)4852.90 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s +  0 )(D *- K 0 )2K - K + K S  + 2 - (1-2) 0 D s * (2112.4)D 1 * (2770)4882.40 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D s -  +  - )2K - 2K + 2 + 2 -  D sJ * (2317.5)D sJ * (2572.4)4889.90 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s +  0 )(D 0 K - )2K - 2K +  +  - (1-2) 0 D sJ (2458.5) 4917.00 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + ((D s + ) 0 )((D s - ) 0 )2K - 2K +  +  - 2 0  D s * (2112.4)D 2 (2870)4982.40 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )((D s - ) +  - )2K - 2K + 2 + 2 -  D sJ (2458.5)D s1 (2535.4)4993.90 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + ((D s + ) 0 )(D *- K 0 )2K - K + K S  + 2 - (1-2) 0  D sJ (2458.5)D sJ * (2572.4)5030.90 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + ((D s + ) 0 )(D 0 K - )2K - 2K +  +  - (1-2) 0  D s1 (2535.4) 5070.80 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D *+ K 0 )(D *- K 0 )K - K + 2K S 2 + 2 - (0-2) 0

24 24K. Peters - Panda and Charmonium Prospects at FAIR Charmed Hadrons in Nuclear Matter Partial restoration of chiral symmetry in nuclear matter Light quarks are sensitive to quark condensate Evidence for mass changes of pions and kaons has been deduced previously: deeply bound pionic atoms (anti-)kaon yield and phase space distribution D-Mesons are the QCD analogue of the H-atom. chiral symmetry to be studied on a single light quark Hayaski, PLB 487 (2000) 96 Morath, Lee, Weise, priv. Comm. DD 50 MeV D D+D+ vacuum nuclear medium  K 25 MeV 100 MeV K+K+ KK  

25 25K. Peters - Panda and Charmonium Prospects at FAIR Charmonium in the Nuclei Lowering of the D + D - mass allow charmonium states to decay into this channel, thus resulting in a dramatic increase of width ψ(1D)Γ=2040 MeV ψ(2S)Γ=0,322,7 MeV Experiment: Dilepton-Channels and/or highly constrained hadronic channels Idea Study relative changes of yield and width of the charmonium states 3 GeV/c 2 Mass 3.2 3.4 3.6 3.8 4 (1 3 D 1 ) (1 3 S 1 ) (2 3 S 1 )  c (1 1 S 0 ) (3 3 S 1 )  c2 (1 3 P 2 )  c1 (1 3 P 1 )  c1 (1 3 P 0 ) 3,74 3,64 3,54 vacuum 1010 2020

26 26K. Peters - Panda and Charmonium Prospects at FAIR Charmonium mass shift in nuclear matter Quantum numbers QCD 2 nd Stark eff. Potential model QCD sum rules Effects of DD loop ηcηc 0 -+ –8 MeV [1]–5 MeV [4] J/ψ 1 -- –8 MeV [1]-10 MeV [3]–7 MeV [4]< 2 MeV [5]  c0,1,2 0,1,2 ++ -40 MeV [2]-60 MeV [2] ψ(3686) 1 -- -100 MeV [2]< 30 MeV [2] ψ(3770) 1 -- -140 MeV [2]< 30 MeV [2] [1] Peskin, NPB 156(1979)365, Luke et al., PLB 288(1992)355 [2] Lee, nucl-th/0310080 [3] Brodsky et al, PRL 64(1990)1011 [4] Klingel, Kim, Lee, Morath, Weise, PRL 82(1999)3396 [5] Lee, Ko PRC 67(2003)038202

27 27K. Peters - Panda and Charmonium Prospects at FAIR Proposed Detector (Overview) High Rates Total σ ~ 55 mb peak > 10 7 int/s Vertexing (σ p,K S,Λ,…) Charged particle ID (e ±,μ ±,π ±,p,…) Magnetic tracking Elm. Calorimetry (γ,π 0,η) Forward capabilities (leading particles) Sophisticated Trigger(s)

28 28K. Peters - Panda and Charmonium Prospects at FAIR LoI Analysis 1: η c γγ Main background π 0 π 0 and π 0 γ with strong forward peaks only cos θ η ≤0.2, like E760 did Analysis missing mass<0.16 GeV 2 cos θ γγ <-0.9999 Efficiency 10.3 % (full kinematical region) Main Requirement very low energy threshold for backward EMC Signal Background

29 29K. Peters - Panda and Charmonium Prospects at FAIR LoI Analysis 2: ψ(3770)D* + D* - Peak cross section assume 5 nb Analysis two displaced vertices mass difference technique helicity angle cut 20% efficiency To be done Kalman filter (for improved resolution) Particle (Kaon) ID Background Signal mm

30 30K. Peters - Panda and Charmonium Prospects at FAIR LoI Analysis 3: μ + μ - from J/ψ produced in p 63 Cu Signal Calculations from A. Sibirtsev at √s=4.05 GeV/c 2 Background UrQMD events Muons come from the decay of light hadrons To be done more statistics fro the UrQMD background, so that the background shape under the J/ψ is clearly visible Signal Background J/ψ

31 31K. Peters - Panda and Charmonium Prospects at FAIR PAX – Polarized Antiproton Experiment Motivation The transversity distribution is the last leading-twist missing piece of the QCD description of the partonic structure of the nucleon The transversity distribution is directly accessible uniquely via the double transverse spin asymmetry A TT in the Drell-Yan production of lepton pairs....... and/or via J/ψ production, which might be two orders of magnitude higher Main problems: physics favors large s (>50 GeV 2 ) needs large polarization of beam and target beam polarization technique unverified

32 32K. Peters - Panda and Charmonium Prospects at FAIR ASSIA – A Study of Spin dependent Interactions with Antiprotons Investigate also Drell-Yan Proposed with 40 GeV/c beam accelerated by SIS300 Target NH 3 10g/cm 2 Luminosity up to 1.5x10 31 cm -2 s -1 as single user Detector first part of COMPASS

33 33K. Peters - Panda and Charmonium Prospects at FAIR Recommendations of the FAIR QCD PAC Panda The PAC accepts the letter and asks the proponents to go ahead to a Technical Proposal PAX and ASSIA The PAC considers the spin physics of extreme interest and the building of an antiproton polarized beam as a unique possibility for the FAIR project, but does not approve the letters of intent asking for a more detailed study of achievable antiproton polarization and the anticipated physics results.

34 34K. Peters - Panda and Charmonium Prospects at FAIR FAIR Structure AFI Administrative and Financial Issues STI Scientific and Technical Issues ISC International Steering Committee

35 35K. Peters - Panda and Charmonium Prospects at FAIR FAIR Phases Contract Development Contract Negotiations Closing 20042005 2006 MoUPhase I – Governed by MoUPhase I – Governed by contracts AFI STI LoI Proposals/TR s TDR s

36 36K. Peters - Panda and Charmonium Prospects at FAIR Road Map towards completion assuming proper funding 2004 (Jan. 15th, April 15th) Letters of Intent of experiments and evaluations ASSIA, CBM, FLAIR,PANDA, PAX, DIRAC2, Laser Cool 2005, January 15thTechnical Proposals of all projects (TP) with Milestones (Accelerators, Experiments, …..) followed by Evaluations and Green Light for Construction 2005, MayProject construction starts (dominantly Civil Construction) 2005-2008 Technical Design Reports (TDR) (according to Milestones TPs) 2006High Intensity Running at SIS18 2007LHC is running, laboratories have free valences for construction of accelerators and detectors 2009 SIS100 Tunnel ready for Installation 2010 SIS100 Commissioning followed by Physics 2011-2013Step-by-Step Commissioning of the full Facility

37 37K. Peters - Panda and Charmonium Prospects at FAIR Summary and Outlook It’s an amazing time in charm spectroscopy many new states – but no coherent picture Where are gluonic excited charmonia (hybrids) spectrum, widths and decay channels What are the new D sJ states and the X(3872) what are their properties like width and decay channels Interaction with nuclear matter mass shifts, broadening and attenuation Only high precision experiments can finally help to solve the puzzle like Panda @ HESR @ GSI


Download ppt "D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1 3 D 1 ) η c (1 1 S 0 ) η c (2 1 S 0 ) J/ψ(1 3 S 1 ) χ c0 (1 3 P 0 ) χ c1 (1 3 P 1 ) χ c2 (1 3 P 2 ) h."

Similar presentations


Ads by Google