Presentation is loading. Please wait.

Presentation is loading. Please wait.

Hadron Klaus Peters Ruhr-Universität Bochum Santiago de Campostela, Oct 27, 2003.

Similar presentations


Presentation on theme: "Hadron Klaus Peters Ruhr-Universität Bochum Santiago de Campostela, Oct 27, 2003."— Presentation transcript:

1 Hadron Klaus Peters Ruhr-Universität Bochum Santiago de Campostela, Oct 27, 2003

2 2 K. Peters - Hadron Panda Overview The Panda Physics Program Charmonium spectroscopy Charmed hybrids and glueballs Interaction of charmed particles with nuclei (Double) Hypernuclei Many further options Detector Concepts for Panda Conclusions

3 3 K. Peters - Hadron Panda QCD running coupling constant transition from perturbative to non-perturbative regime Q 2 [GeV 2 ] perturbative QCDconstituent quark confinement mesons and baryons RnRn r [fm] Transition from the quark-gluon to the hadronic degrees of freedom perturbativestrong QCD

4 4 K. Peters - Hadron Panda Objects of Interest SU(3) C Symmetry tells us that q 3i+n q 3j+n g k is color neutral i=1 j,n,k=0 baryon (B=i-j) i,j,k=0 n=1 meson i,j,n=0 k>1 glueball i,j=0 n=1 k>0 meson hybrid i=1 j,n=0 k>0 baryon hybrid i,n=1 j,k=0penta quark i,j,k=0 n=2four quark i,j,k=0 n=3 / i,j=3 k,n=0baryonium (hexa quark)

5 5 K. Peters - Hadron Panda Objects of Interest Mesons/Baryons Molecules/Multiquarks Hybrids Glueballs + Effects due to the complicated QCD vacuum QuarkAntiQuark

6 6 K. Peters - Hadron Panda qq Mesons L = Each box corresponds to 4 nonets (2 for L=0) Radial excitations (L = qq angular momentum) exotic nonets 0 –+ 0 +– – 1 –+ 1 –– 2 –+ 2 +– –+ 2 – Glueballs Hybrids Lattice GeV Light Meson Spectrum GeV

7 7 K. Peters - Hadron Panda Level Mixing Mixing (Light Quark) broad states high level density Better: narrow states and/or lower level density charmed systems ! Experimental approach: Charm physics: Transition chiral to heavy quark limits Proton-Antiproton: rich hadronic source

8 8 K. Peters - Hadron Panda Charmonium Physics Open questions …  c – inconsistencies  c’ -  (2S) splitting h 1c ( 1 P 1 ) unconfirmed Peculiar decays of (4040) Terra incognita for any 2P and D-States … Exclusive Channels Helicity violation G-Parity violation Higher Fock state contributions

9 9 K. Peters - Hadron Panda MeV3510 CBall ev./2 MeV 100 E CM Charmonium Physics e + e - interactions: Only 1 -- states are formed Other states only by secondary decays (moderate mass resolution) pp reactions: All states directly formed (very good mass resolution) CBall E E 835 ev./pb  c1

10 10 K. Peters - Hadron Panda E CM Resonance Scan Measured Rate Beam Profile Resonance Cross Section small and well controlled beam momentum spread p/p is extremely important

11 11 K. Peters - Hadron Panda Charmonium Physics with pp Expect 1-2 fb -1 (like CLEO-C) pp (>5.5 GeV/c) J/10 7 /d pp (>5.5 GeV/c)  c2 (J/10 5 /d pp (>5.5 GeV/c)  c ‘(10 4 /d| rec. ? Comparison of to E835 Maximum energy 15 GeV/c instead of 9 GeV/c Luminosity 10x higher Detector with magnetic field – charged final states p/p 10x better Dedicated machine with stable conditions

12 12 K. Peters - Hadron Panda Charmed Hybrids Gluonic excitations of the quark-antiquark-potential may lead to bound states LQCD: -potential of excited gluon flux in addition to -potential for one-gluon exchange m Hc ~ GeV/c 2 Light charmed hybrids could be narrow if open charm decays are inaccessible or suppressed   important and r Breakup

13 13 K. Peters - Hadron Panda Simplest Hybrids S-Wave+Gluon (qq) 8 g with () 8 =coloured 1 S 0  3 S 1  combined with a 1 + or 1 - gluon Gluon1 – (TM) 1 +(TE) 1 S 0, 0 – –– 3 S 1, 1 –– – – –+ Meson – Hybrid Mixing g MIX g FSI q q Exotic J PC cannot! be formed by qq

14 14 K. Peters - Hadron Panda Charmed Hybrid Level Scheme 1 -- (0,1,2) -+ < 1 ++ (0,1,2) +- JKM00, NPB83Suppl83(2000)304 and Manke, PRD57(1998)3829 L-Splitting m ~ MeV/c 2 for 1 -+ to 0 +- S-Splittings Page thesis,1995 and PRD35(1987) (0 -+ ) to 4.52 GeV/c 2 (2 -+ ) consistent w/LQCD JKM, NPB86suppl(2000)397, PLB478(2000) DD**

15 15 K. Peters - Hadron Panda Charmed Hybrid Level Scheme 1 -- (0,1,2) -+ < 1 ++ (0,1,2) +- JKM00, NPB83Suppl83(2000)304 and Manke, PRD57(1998)3829 L-Splitting m ~ MeV/c 2 for 1 -+ to 0 +- S-Splittings Page thesis,1995 and PRD35(1987) (0 -+ ) to 4.52 GeV/c 2 (2 -+ ) consistent w/LQCD JKM, NPB86suppl(2000)397, PLB478(2000) DD**

16 16 K. Peters - Hadron Panda Rest/Flight Gluon rich process creates gluonic excitation in a direct way cc requires the quarks to annihilate (no rearrangement) yield comparable to charmonium production formation yield 8:1 due to colour octet in hybrids Production all J PC available Formation only selected J PC

17 17 K. Peters - Hadron Panda Rest/Flight Gluon rich process creates gluonic excitation in a direct way cc requires the quarks to annihilate (no rearrangement) yield comparable to charmonium production formation yield 8:1 due to colour octet in hybrids Momentum range for a survey p p ~15 GeV p p _ G M p M H p _ p M H p _ p p _ G p p _ H p p _ H Production all J PC available Formation only selected J PC

18 18 K. Peters - Hadron Panda Exotics in Proton-Antiproton Exotics are heavily produced in pp reactions High production yields for exotic mesons (or with a large fraction of it) f 0 (1500)  ~25 % in 3  f 0 (1500)  ~25 % in 2   1 (1400)  >10 % in      Crystal Barrel Interference with other well known (conventional) states is mandatory for the phase analysis

19 19 K. Peters - Hadron Panda Open charm discoveries The D S ± Spectrum |cs> +c.c. was not expected to reveal any surprises, but chiral and heavy quark aspects meet Potential model Old measurements New observations 00 11 00 11 22 33 DsDs Ds*Ds* D sJ * (2317) D s1 m [GeV/c 2 ] D0KD0K D*K D sJ (2458) D s2 JPJP # 1267  53 Events in peak Combinatorial D S *+  D S *+ (2112) BABARBABAR D sJ * (2317)

20 20 K. Peters - Hadron Panda Heavy Glueballs Light gg/ggg-systems are complicated to identify (mixing!) Exotic heavy glueballs m(0 +- ) = 4140 (50)(200) MeV m(2 +- ) = 4740 (70)(230) MeV Width unknown, but! nature invests more likely in mass than in momentum newest proof: double cc yield in e + e - Flavour-blindness predicts decays into charmed final states too Same run period as hybrids In addition: scan m>2 GeV/c 2 Morningstar und Peardon, PRD60 (1999) Morningstar und Peardon, PRD56 (1997) 4043

21 21 K. Peters - Hadron Panda Accessible cc-Hadrons at GSI Other exotics with identical decay channels  same region mass and phase space of recoil meson for exotic J PC included conventional charmonium

22 22 K. Peters - Hadron Panda Charmed Hadrons in Nuclear Matter Partial restoration of chiral symmetry in nuclear matter Light quarks are sensitive to quark condensate Evidence for mass changes of pions and kaons has been deduced previously: deeply bound pionic atoms (anti-)kaon yield and phase space distribution D-Mesons are the QCD analogue of the H-atom. chiral symmetry to be studied on a single light quark Hayaski, PLB 487 (2000) 96 Morath, Lee, Weise, priv. Comm. DD 50 MeV D D+D+ vacuum nuclear medium  K 25 MeV 100 MeV K+K+ KK  

23 23 K. Peters - Hadron Panda bare D + D  (nb) 4567 Open Charm in the Nuclei The expected signal: strong enhancement of the D-meson cross section, relative D + D - yields, in the near/sub-threshold region. Complementary to heavy ion collisions D+D+ in-medium free masses T (GeV) D-D- T~0 (A) = ? pApA ApNApN ApNApN pApA

24 24 K. Peters - Hadron Panda Charmonium in the Nuclei Lowering of the D + D - mass allow charmonium states to decay into this channel, thus resulting in a dramatic increase of width (1D)Γ=2040 MeV (2S)Γ=0,322,7 MeV Experiment: Dilepton-Channels and/or highly constrained hadronic channels Idea Study relative changes of yield and width of the charmonium states. 3 GeV/c 2 Mass (1 3 D 1 ) (1 3 S 1 ) (2 3 S 1 )  c (1 1 S 0 ) (3 3 S 1 )  c2 (1 3 P 2 )  c1 (1 3 P 1 )  c1 (1 3 P 0 ) 3,74 3,64 3,54 vacuum 1010 2020

25 25 K. Peters - Hadron Panda J/ Absorption in Nuclei Important for the understanding of heavy ion collisions Related to QGP p

26 26 K. Peters - Hadron Panda J/ψ Absorption in Nuclei Important for the understanding of heavy ion collisions Related to QGP Reaction p + A  J/ψ + (A-1) Fermi-smeared cc-Production J/ψ, ψ’ or interference region selected by p-Momentum Longitudinal und transverse Fermi-distribution is measurable e+e+ ee J/ (e + e  ) pb p(pbar) GeV/c FF J/

27 27 K. Peters - Hadron Panda Further Experiments and Optional extensions Hypernuclear physics 3 rd dimension of nuclear chart Focus: Double Hypernuclei Inverted DVCS - WACS Measure dynamics of quarks and gluons in a hadron Handbag diagram – electromagnetic final states Proton Formfactors at large Q 2 s up to 25 GeV 2 /c 4 D (S) -Physics Spectroscopy: Threshold production BR and decay dalitz plots with high statistics CP-Violation in the D-Sector

28 28 K. Peters - Hadron Panda The Antiproton Facility

29 29 K. Peters - Hadron Panda The Antiproton Facility Antiproton production similar to CERN, HESR = High Energy Storage Ring Production rate 10 7 /sec P beam = GeV/c N stored = 5 x p Gas-Jet/Pellet/Wire Target High luminosity mode Luminosity = 2 x cm -2 s -1 p/p ~ (stochastic cooling) High resolution mode p/p ~ (electron cooling) Luminosity = cm -2 s -1

30 30 K. Peters - Hadron Panda Proposed Detector (Overview) High Rates Total σ ~ 55 mb Vertexing (σ p,K S,Λ,…) Charged particle ID (e ±,μ ±,π ±,p,…) Magnetic tracking Elm. Calorimetry (γ,π0,η)(γ,π0,η) Forward capabilities (leading particles) Sophisticated Trigger(s)

31 31 K. Peters - Hadron Panda Participating Institutes (with Representative in the Coordination Board) U Oriente, Alessandria U Bochum U Bonn U & INFN Brescia U Catania U Cracow GSI Darmstadt TU Dresden JINR Dubna I + II U Edinburgh U Erlangen NWU Evanston U & INFN Ferrara U Frankfurt LNF-INFN Frascati U & INFN Genova U Glasgow U Gießen KVI Groningen IKP Jülich I + II U Katowice U Mainz TU München U Münster BINP Novosibirsk U Pavia U of Silesia U Stockholm U Torino Politechnico di Torino U & INFN Trieste U Tübingen U & TSL Uppsala IMEP Vienna SINS Warsaw 42 Institutes (35 Locations) from 9 Countries: Austria - Germany – Italy – Netherlands – Poland – Russia – Sweden – U.K. – U.S.

32 32 K. Peters - Hadron Panda Competition BES, BNL, CLEO-C, Da Φ ne, Hall-D, JHF TopicCompetitor Confinement Charmonium all cc states with high resolution CLEO-C only 1 –– states Gluonic Excitations charmed hybrids heavy glueballs CLEO-C light glueballs Hall-D light hybrids Nuclear Interactions D-mass shift J/ψ absorption (T~0) Da Φ ne K-mass shift Hypernuclei γ-spectroscopy of Λ- and ΛΛ–hypernuclei BNL indirect evidence only JHF single HN Open Charm Physics Rare D-Decays CP-physics in Hadrons CLEO-C rare D-Decays CP-physics in D-Mesons ν,K-beams JHF rare K-Decays (?) neutrino physics

33 33 K. Peters - Hadron Panda Why Antiprotons ? high resolution spectroscopy with p-beams in formation experiments: ΔE  ΔE beam high yields of gluonic excitations in pp glueballs, charmed hybrids event tagging by pair wise associated production, (particle, anti-particle) e.g. ppDD large √s at low momentum transfer important for in-medium "implantation" of hadrons: study of in-medium effects of charmed states

34 34 K. Peters - Hadron Panda Summary & Outlook Investigation of charmed hadrons and their interaction with matter is a mandatory task for the next decade The antiproton facility GSI addresses many important questions A high performance storage ring and detector are envisaged to utilize a luminosity of L=2∙10 32 cm -2 s -1


Download ppt "Hadron Klaus Peters Ruhr-Universität Bochum Santiago de Campostela, Oct 27, 2003."

Similar presentations


Ads by Google