Presentation is loading. Please wait.

Presentation is loading. Please wait.

Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.

Similar presentations


Presentation on theme: "Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1."— Presentation transcript:

1 Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1 3 D 1 ) η c (1 1 S 0 ) η c (2 1 S 0 ) J/ψ(1 3 S 1 ) χ c0 (1 3 P 0 ) χ c1 (1 3 P 1 ) χ c2 (1 3 P 2 ) h 1c (1 1 P 1 ) D*D* ψ(3 3 S 1 ) ψ(2 3 S 1 ) χ c0 (2 3 P 0 ) χ c1 (2 3 P 1 ) χ c2 (2 3 P 2 ) h 1c (2 1 P 1 ) η c (3 1 S 0 )

2 2 K. Peters - Open and Hidden Charm Spectroscopy with Panda The GSI Future Facility Panda

3 3 K. Peters - Open and Hidden Charm Spectroscopy with Panda Overview The Physics Program (Panda Experiment) Charmonium spectroscopy Charmed hybrids and glueballs Interaction of charmed particles with nuclei Hypernuclei Further options The Antiproton Facility (HESR) Conclusions

4 4 K. Peters - Open and Hidden Charm Spectroscopy with Panda Were do we stand ? Perturbative QCD works for high Q 2 or large m q one gluon exchange At low Q 2 chiral limit m q 0 Mass generation of hadrons is uncertain 98% of the mass of the proton is not understood Effective theories for the limits but lacking real understanding of the degrees of freedom How to connect the regions?

5 5 K. Peters - Open and Hidden Charm Spectroscopy with Panda Black Body Radiation Rayleigh-Jeans Wien Planck Wavelength λ [μm] Wavelength λ [μm] for T=300 K rel. difference [%] spectral emission [W/m 2 [%]

6 6 K. Peters - Open and Hidden Charm Spectroscopy with Panda Approach Increase precision measure static properties of well known states Increase the database of decays search for unusual decay modes to gain information Excite additional modes search for gluonic and radial excitations of hadrons search for gluonic excitation of the strong vacuum Put the hadrons to the limits put the hadrons in vacuum with different baryon density

7 7 K. Peters - Open and Hidden Charm Spectroscopy with Panda Level Mixing Light quark problem the mixing Mixing broad states high level density Better: narrow states and/or lower level density charmed systems !

8 8 K. Peters - Open and Hidden Charm Spectroscopy with Panda Charmonium Physics D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1 3 D 1 ) M cc [GeV/c 2 ] η c (1 1 S 0 ) η c (2 1 S 0 ) J/ψ(1 3 S 1 ) χ c0 (1 3 P 0 ) χ c1 (1 3 P 1 ) χ c2 (1 3 P 2 ) h 1c (1 1 P 1 ) 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 D*D* ψ(3 3 S 1 ) p p [GeV/c] ψ(2 3 S 1 ) χ c0 (2 3 P 0 ) χ c1 (2 3 P 1 ) χ c2 (2 3 P 2 ) h 1c (2 1 P 1 ) η c (3 1 S 0 ) 3.4 4.1 4.8 5.5 6.3 7.1 8.0 J P =0 + 1-1- 1+1+ (0,1,2) + 2-2- (1,2,3) - … Exclusive Channels Helicity violation G-Parity violation Higher Fock state contributions Open questions … η c – inconsistencies η c ’ - ψ(2S) splitting h 1c – unconfirmed Peculiar ψ(4040) Terra incognita for 2P and 1D-States

9 9 K. Peters - Open and Hidden Charm Spectroscopy with Panda The X(3872) New state discovered by Belle in B  K  (J/ψπ + π - ), J/ψµ + µ - or e + e - M = 3872.0  0.6  0.5 MeV Γ  2.3 MeV (90 % C.L.) X(3872) seen also by CDF M = 3871.4  0.7  0.4 MeV CDF, preliminary, Bauer, QWG 2003 Belle, preliminary, hep-ex/0309032 signal region sideband region

10 10 K. Peters - Open and Hidden Charm Spectroscopy with Panda 35003520 MeV3510 CBall ev./2 MeV 100 E CM Charmonium Physics e + e - interactions: Only 1 -- states are formed Other states only by secondary decays moderate mass resolution pp reactions: All states directly formed very good mass resolution CBall E835 1000 E 835 ev./pb  c1 CBall, Edwards et al. PRL 48 (1982) 70 E835, Ambrogiani et al., PRD 62 (2000) 052002

11 11 K. Peters - Open and Hidden Charm Spectroscopy with Panda E CM Resonance Scan Measured Rate Beam Profile Resonance Cross Section small and well controlled beam momentum spread p/p is extremely important

12 12 K. Peters - Open and Hidden Charm Spectroscopy with Panda Charmonium Physics with pp Expect 1-2 fb -1 (like CLEO-C) pp (>5.5 GeV/c) J/ψ10 7 /d pp (>5.5 GeV/c) χ c2 (J/ψγ10 5 /d pp (>5.5 GeV/c) η c ´(10 4 /d| rec. ? Comparison of PANDA@HESR to E835 15 GeV/cmaximum mom. instead of 9 GeV/c 10x higherLuminosity than achieved before charged tracksdetector with magnetic field 10x smallerδp/p stable conditionsdedicated high energy storage ring

13 13 K. Peters - Open and Hidden Charm Spectroscopy with Panda   Charmed Hybrids LQCD: gluonic excitations of the quark-antiquark-potential may lead to bound states -potential for one-gluon exchange -potential from excited gluon flux m Hcc ~ 4.2-4.5 GeV/c 2 Light charmed hybrids could be narrow if open charm decays are inaccessible or suppressed   important and r Breakup 3 3.5 4 1 2 R/r 0 V( R )/GeV J/ψ χcχc ψ‘ψ‘ HccHcc D

14 14 K. Peters - Open and Hidden Charm Spectroscopy with Panda 02468121510 p Momentum [GeV/c] Mass [GeV/c 2 ] Two body thresholds Molecules Gluonic Excitations qq Mesons 123456 Hybrids Hybrids+Recoil Glueball Glueball+Recoil ΛΛ ΣΣ ΞΞ ΛcΛcΣcΣcΞcΞcΛcΛcΣcΣcΞcΞc ΩcΩcΩcΩc ΩΩD DsDsDsDs qqccqqccqq nng,ssgccgccg ggg,gg light qq π,ρ,ω,f 2,K,K *c J/ψ, η c, χ cJ nng,ssgccgccg ggg Accessible Charmed Hadrons at PANDA @ GSI Other exotics with identical decay channels  same region conventional charmonium exotic charmonium

15 15 K. Peters - Open and Hidden Charm Spectroscopy with Panda Heavy Glueballs Light gg/ggg-systems are complicated to identify (mixing!) Exotic heavy glueballs m(0 +- ) = 4140 (50)(200) MeV m(2 +- ) = 4740 (70)(230) MeV Width unknown, but! nature invests more likely in mass than in momentum newest proof: double cc yield in e + e - Flavour-blindness predicts decays into charmed final states too Same run period as hybrids In addition: scan m>2 GeV/c 2 Morningstar,Peardon, PRD60(1999)34509 Morningstar,Peardon, PRD56(1997)4043 0 +- 2 +-

16 16 K. Peters - Open and Hidden Charm Spectroscopy with Panda Recent open charm discoveries The D S ± Spectrum |cs> + c.c. was not expected to reveal any surprises Potential model Old measurements New observations 00 11 00 11 22 33 DsDs Ds*Ds* D sJ * (2317) D s1 m [GeV/c 2 ] D0KD0K D*K D sJ (2458) D s2 * JPJP

17 17 K. Peters - Open and Hidden Charm Spectroscopy with Panda D s[J] [*]± Pairproduction in pp Annihilation Associated Pair m/MeV/c 2 JPJP Channel (+cc)Final State D s (1968.5) 3937.00 +,1 -,2 +,3 -,4 + Ds+Ds-Ds+Ds- 2K - 2K +  +  - D s (1968.5)D s * (2112.4)4080.90 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D s - )2K - 2K +  +  -  D s * (2112.4) 4224.80 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D s - )2K - 2K +  +  -  D s (1968.5)D sJ * (2317.5)4286.00 -,1 +,2 -,3 +,4 - D s + (D s -  0 )2K - 2K +  +  -  0 D s (1968.5)D sJ (2458.5)4427.00 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + ((D s - ) 0 )2K - 2K +  +  -  0  D s * (2112.4)D sJ * (2317.5)4429.90 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D s -  0 )2K - 2K +  +  -  0  D s (1968.5)D s1 (2535.4)4503.90 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D *- K 0 ) 2K - K + K S  + 2 - ( 0 ) D s (1968.5)D sJ * (2572.4)4540.90 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D 0 K - ) 2K - 2K +  +  - ( 0 ) D s * (2112.4)D sJ (2458.5)4570.90 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )((D s - ) 0 )2K - 2K +  +  -  0  D sJ * (2317.5) 4635.00 +,1 -,2 +,3 -,4 + (D s +  0 )(D s -  0 )2K - 2K +  +  - 2 0 D s * (2112.4)D s1 (2535.4)4647.90 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D *- K 0 )2K - K + K S  + 2 - ( 0 ) D s * (2112.4)D sJ * (2572.4)4684.40 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D 0 K - )2K - 2K +  +  - ( 0 ) D s (1968.5)D 1 * (2770)4738.50 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D s -  +  - )2K - 2K + 2 + 2 - D sJ * (2317.5)D sJ (2458.5)4776.00 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s +  0 )((D s - ) 0 )2K - 2K +  +  - 2 0  D s (1968.5)D 2 (2870)4838.50 +,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + ((D s - ) +  - )2K - 2K + 2 + 2 -  D sJ * (2317.5)D s1 (2535.4)4852.90 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s +  0 )(D *- K 0 )2K - K + K S  + 2 - (1-2) 0 D s * (2112.4)D 1 * (2770)4882.40 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D s -  +  - )2K - 2K + 2 + 2 -  D sJ * (2317.5)D sJ * (2572.4)4889.90 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s +  0 )(D 0 K - )2K - 2K +  +  - (1-2) 0 D sJ (2458.5) 4917.00 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + ((D s + ) 0 )((D s - ) 0 )2K - 2K +  +  - 2 0  D s * (2112.4)D 2 (2870)4982.40 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )((D s - ) +  - )2K - 2K + 2 + 2 -  D sJ (2458.5)D s1 (2535.4)4993.90 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + ((D s + ) 0 )(D *- K 0 )2K - K + K S  + 2 - (1-2) 0  D sJ (2458.5)D sJ * (2572.4)5030.90 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + ((D s + ) 0 )(D 0 K - )2K - 2K +  +  - (1-2) 0  D s1 (2535.4) 5070.80 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D *+ K 0 )(D *- K 0 )K - K + 2K S 2 + 2 - (0-2) 0

18 18 K. Peters - Open and Hidden Charm Spectroscopy with Panda The Antiproton Facility - HESR Antiproton production similar to CERN HESR = High Energy Storage Ring Production rate 10 7 /s P beam = 1.5 - 15 GeV/c N stored = 5 x 10 10 p Gas-Jet/Pellet/Wire Target High luminosity mode Luminosity = 2 x 10 32 cm -2 s -1 δp/p ~ 10 -4 (stochastic cooling) High resolution mode δp/p ~ 10 -5 (electron cooling) Luminosity = 10 31 cm -2 s -1

19 19 K. Peters - Open and Hidden Charm Spectroscopy with Panda Proposed Detector (Overview) High Rates Total σ ~ 55 mb peak > 10 7 int/s Vertexing (σ p,K S,Λ,…) Charged particle ID (e ±,μ ±,π ±,p,…) Magnetic tracking Elm. Calorimetry (γ,π 0,η) Forward capabilities (leading particles) Sophisticated Trigger(s)

20 20 K. Peters - Open and Hidden Charm Spectroscopy with Panda Summary and Outlook It’s an amazing time in charm spectroscopy many new states – but no coherent picture Where are gluonic excited charmonia (hybrids) spectrum, widths and decay channels What are the new D sJ states and the X(3872) what are their properties like width and decay channels Interaction with nuclear matter mass shifts, broadening and attenuation Only high precision experiments can finally help to solve the puzzle like Panda @ HESR @ GSI

21 21 K. Peters - Open and Hidden Charm Spectroscopy with Panda Backup Slides

22 22 K. Peters - Open and Hidden Charm Spectroscopy with Panda S1S1 S2S2 S=S 1 +S 2 J=L+S P=(-1) L+1 C=(-1) L+S L Simplest Hybrids S-Wave+Gluon (qq) 8 g with () 8 =coloured 1 S 0  3 S 1 combined with a 1 + or 1 - gluon Gluon1 – (TM) 1 +(TE) 1 S 0, 0 –+ 1 ++ 1 –– 3 S 1, 1 –– 0 +- 0 –+ 1 +- 1 –+ 2 +- 2 –+ Exotic J PC cannot! be formed by qq

23 23 K. Peters - Open and Hidden Charm Spectroscopy with Panda LQCD ccg 1 -+ vs. cc 1 -- (J/ψ) 1 -+ m(ccg)ModelGroupReference 4390±80±200 isotropicMILC97PRD56(1997)7039 4317±150 isotropicMILC99NPB93Supp(1999)264 4287 isotropicJKM99PRL82(1999)4400 4369±37±99 anisotropicZSU02hep-lat/0206012 (1 -+,1 -- ) m(ccg)- m(cc) 1340±80±200 isotropicMILC97PRD56(1997)7039 1220±150 isotropicMILC99NPB93Supp(1999)264 1323±130 anisotropicCP-PACS99PRL82(1999)4396 1190 isotropicJKM99PRL82(1999)4400 1302±37±99 anisotropicZSU02hep-lat/0206012

24 24 K. Peters - Open and Hidden Charm Spectroscopy with Panda Charmed Hybrid Level Scheme 1 -- (0,1,2) -+ < 1 ++ (0,1,2) +- JKM, NPB 83 suppl (2000)304 and Manke, PRD57(1998)3829 L-Splitting Δm ~ 100-250 MeV/c 2 for 1 -+ to 0 +- S-Splittings Page thesis,1995 and PRD 35(1987)1668 4.14 (0 -+ ) to 4.52 GeV/c 2 (2 -+ ) consistent w/LQCD JKM, NPB 86 suppl (2000)397, PLB478(2000) 151 0 -+ 4.14 1 -+ 4.37 2 -+ 4.52 1 -- 4.48 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 0 +- 4.47 1 +- 4.70 2 +- 4.85 1 ++ 4.81 DD**

25 25 K. Peters - Open and Hidden Charm Spectroscopy with Panda Charmed Hadrons in Nuclear Matter Partial restoration of chiral symmetry in nuclear matter Light quarks are sensitive to quark condensate Evidence for mass changes of pions and kaons has been deduced previously: deeply bound pionic atoms (anti-)kaon yield and phase space distribution D-Mesons are the QCD analogue of the H-atom. chiral symmetry to be studied on a single light quark Hayaski, PLB 487 (2000) 96 Morath, Lee, Weise, priv. Comm. DD 50 MeV D D+D+ vacuum nuclear medium  K 25 MeV 100 MeV K+K+ KK  

26 26 K. Peters - Open and Hidden Charm Spectroscopy with Panda Charmonium in the Nuclei Lowering of the D + D - mass allow charmonium states to decay into this channel, thus resulting in a dramatic increase of width ψ(1D)Γ=2040 MeV ψ(2S)Γ=0,322,7 MeV Experiment: Dilepton-Channels and/or highly constrained hadronic channels Idea Study relative changes of yield and width of the charmonium states 3 GeV/c 2 Mass 3.2 3.4 3.6 3.8 4 (1 3 D 1 ) (1 3 S 1 ) (2 3 S 1 )  c (1 1 S 0 ) (3 3 S 1 )  c2 (1 3 P 2 )  c1 (1 3 P 1 )  c1 (1 3 P 0 ) 3,74 3,64 3,54 vacuum 1010 2020

27 27 K. Peters - Open and Hidden Charm Spectroscopy with Panda Charmonium mass shift in nuclear matter Quantum numbers QCD 2 nd Stark eff. Potential model QCD sum rules Effects of DD loop ηcηc 0 -+ –8 MeV [1]–5 MeV [4] J/ψ 1 -- –8 MeV [1]-10 MeV [3]–7 MeV [4]< 2 MeV [5]  c0,1,2 0,1,2 ++ -40 MeV [2]-60 MeV [2] ψ(3686) 1 -- -100 MeV [2]< 30 MeV [2] ψ(3770) 1 -- -140 MeV [2]< 30 MeV [2] [1] Peskin, NPB 156(1979)365, Luke et al., PLB 288(1992)355 [2] Lee, nucl-th/0310080 [3] Brodsky et al, PRL 64(1990)1011 [4] Klingel, Kim, Lee, Morath, Weise, PRL 82(1999)3396 [5] Lee, Ko PRC 67(2003)038202


Download ppt "Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1."

Similar presentations


Ads by Google