Presentation is loading. Please wait.

Presentation is loading. Please wait.

Fig. 13-CO, p. 347. Fig. 13-1, p. 348 Fig. 13-2, p. 349.

Similar presentations


Presentation on theme: "Fig. 13-CO, p. 347. Fig. 13-1, p. 348 Fig. 13-2, p. 349."— Presentation transcript:

1 Fig. 13-CO, p. 347

2 Fig. 13-1, p. 348

3 Fig. 13-2, p. 349

4 Sunlight Chlorophyll Produces + 6 Water (H 2 O) + 6 Oxygen (O 2 ) 6 Carbon dioxide (CO 2 ) Glucose (C 6 H 12 O 6 )

5 Fig. 13-2, p. 349 Sunlight Chlorophyll Stepped Art + 6 Oxygen (O 2 ) 6 Carbon dioxide (CO 2 ) Glucose (C 6 H 12 O 6 ) + 6 Water (H 2 O) Produces

6 Fig. 13-3, p. 350

7 Sun Light energy Producers Photosynthesizers: Green plants and algae, and specialized bacteria Chemical energy (carbohydrates, etc.) Consumers Respirers: Animals and decomposers and plants at night Energy of movement, waste heat, entropy To space

8 Fig. 13-3, p. 350 Stepped Art Sun Light energy Producers Photosynthesizers: Green plants and algae, and specialized bacteria Chemical energy (carbohydrates, etc.) Consumers Respirers: Animals and decomposers and plants at night Energy of movement, waste heat, entropy To space

9 Fig. 13-4, p. 350

10 6 Carbon dioxide (CO 2 ) + 6 Oxygen (O 2 ) + 24 Hydrogen sulfide (H 2 S) Glucose (C 6 H 12 O 6 ) +24 sulfur (S) + 18 Water (H 2 O)

11 Fig. 13-4, p. 350 Stepped Art + 24 Hydrogen sulfide (H 2 S) + 18 Water (H 2 O) 6 Carbon dioxide (CO 2 ) Glucose (C 6 H 12 O 6 ) + 6 Oxygen (O 2 ) +24 sulfur (S)

12 Fig. 13-5a, p. 351

13 1 meter CO 2 Carbon dioxide C 6 H 12 O 6 Glucose Diatom Typically, oceanic primary productivity in this water column will bind ~120 grams of carbon into molecules of glucose each year. a to bottom of ocean

14 Fig. 13-5b, p. 351

15 Fig. 13-5c, p. 351

16 Table 13-1, p. 352

17 Fig. 13-6a, p. 352

18 Fig. 13-6b, p. 352

19 LOWHIGH

20 Fig. 13-7, p. 353

21 Fig. 13-8, p. 354

22 Trophic Level A tuna sandwich 100 g (1/4 pound) 5 For each kilogram of tuna, Tuna (top consumers) 4 roughly 10 kilograms of mid- size fish must be consumed, Midsize fishes (consumers) 3 and 100 kilograms of small fish, Small fishes and larvae (consumers) 2 and 1,000 kilograms of small herbivores, Zooplankton (primary consumers) 1and 10,000 kilograms of primary producers. Phytoplankton (primary producers)

23 Fig. 13-9, p. 355

24 Fifth level top carnivore Killer Whales Fourth level consumers Seals Third level consumers Sperm whale Penguins Birds Baleen whales Second level consumers Carnivorous zooplankton Pelagic fishes Squid Demersal fishes Primary consumers Copepods Benthic invertebrates Krill Protozoans Primary producers Detritus Microplankton Bacteria Macroalgae

25 Table 13-2, p. 356

26 Fig. 13-10, p. 357

27 CO 2 in atmosphere to plants for photosynthesis CO 2 in the atmosphere Precipitation Decomposers Respiration Dissolved CO 2 Limestone CO 2 is taken up by phytoplankton for photosynthesis Peat coal Plant residues Dissolved CO 2 forms HCO 3 – Decomposition ShellsSediments Limestone

28 Fig. 13-11, p. 358

29 Atmospheric nitrogen Nitrogen fixation by bacteria Nitrogen cycling within the photic zone Runoff Photic zone Producers incorporate nitrogen into amino acids Nutrient settling Nutrient upwelling Runoff: fertilizers, nitrates, plant material

30 Fig. 13-12, p. 358

31 Mining Fertilizers ExcretionGuano Agriculture Uptake by autotrophs Weathering Uptake by autotrophs Marine food webs Dissolved in ocean water Dissolved in soil water, lakes, rivers Land food webs Leaching, runoff Death, decomposition Sedimentation Settling out Weathering Uplifting over geologic time Marine sediments Rocks

32 Fig. 13-13, p. 360

33 90°N Limiting Factors Light Silicon Phosphorous 45°N Nitrogen Fe (Iron) 0° 45°S 90°S 90°W0°90°E180°

34 Fig. 13-14, p. 361

35 Fig. 13-14a, p. 361 Wavelength (nanometers) 500600700 Sea surface Increasing depth Photic zone Approximately 600 m (2,000 ft) Aphotic zone a Clear, open ocean water 400

36 Fig. 13-14b, p. 361 Sea surface 500 600700 Wavelength (nanometers) Photic zone Approximately 100 m (330 ft) Aphotic zone b Coastal ocean water 400

37 Fig. 13-15, p. 361

38 DepthEnough sunlight for: 0 m Euphotic zone to ~70 meters (230 feet) Photosynthesis and vision 100 m 200 m 300 m Vision only—Not enough sunlight for photosynthesis Disphotic zone to ~600 meters (2,000 feet) 400 m 500 m 600 m No sunlight Aphotic zone below 600 meters (2,000 feet)

39 Fig. 13-16, p. 362

40 °F°C 10540 Daytime temperatures in some shallow tropical lagoons 100 95 35 90 Highest surface temperatures in open ocean 30 85 80 Common surface temperatures in tropical waters 75 25 70 Common surface temperatures in subtropical waters 20 65 60 Common surface temperatures in temperate waters 15 55 10 50 Common surface temperatures in high-latitude temperate waters 45 5 40 Surface temperatures in low Arctic and Antarctic waters in summer 35 Surface temperatures of high Arctic and Antarctic waters all year (seawater freezes at –1.9°C) 0 30 25 Temperature at depths of deepest Antarctic basins –5

41 Table 13-3, p. 363

42 Fig. 13-17, p. 364

43 Water Dye cube Day 1Day 2Day 5Day 20

44 Fig. 13-17, p. 364 Day 1 Day 2 Day 5 Day 20 Water Dye cube Stepped Art

45 Fig. 13-18, p. 365

46 Fig. 13-18 (top), p. 365 Cell membrane Outside the cell Inside the cell Outside the cell Inside the cell Outside the cell Inside the cell No net water movement Net water movement out of the cell Net water movement into the cell

47 Fig. 13-18 (bottom), p. 365 Isotonic (no net change in water movement or in shapes of cells) Hypertonic (water diffuses outward, cells shrivel) Hypotonic (water diffuses inward, cells swell up)

48 Fig. 13-19, p. 366

49 Fig. 13-19a, p. 366 Diffusion a

50 Fig. 13-19b, p. 366 Osmosis b

51 Fig. 13-19c, p. 366 “Pump” Active transport c

52 Fig. 13-20, p. 366

53 Diameter (cm)124 Surface area (cm 2 ) 12.5650.24 Volume (cm 3 ) 0.524.1933.51 Surface-to-volume ratio 6.03.01.5 3.14

54 Fig. 13-21, p. 367

55 Fig. 13-22, p. 368

56 Box 13-1a, p. 369

57 Box 13-1b, p. 369

58 Box 13-1c, p. 370

59 Box 13-1d, p. 370

60 Table a, p. 370

61 Fig. 13-23, p. 372

62 Jawless fishes Class Chondrichthyes (cartilaginous fishes) Land-dwelling stem reptiles Shark Pectoral fin Class Reptilia (reptiles) Ichthyosaur Flipper (derived from a foreleg) Class Aves (birds) Class Mammalia (mammals) Penguin Flipper (derived from a wing) Dolphin Flipper (derived from a foreleg)

63 Fig. 13-24, p. 373

64 Fig. 13-25, p. 373

65 Complex many-celled organisms and cells with a nucleus: the EUKARYOTES Kingdom Animalia Kingdom Fungi Kingdom Plantae Kingdom Protista Cells with no nucleus: the PROKARYOTES Kingdom Archaea Kingdom Bacteria Earliest cells

66 Fig. 13-26, p. 374

67 Fig. 13-26a, p. 374 Bacteria Archaea Protista Fungi PlantaeAnimalia TAXON Name of taxon that includes Rex sole 123456 KINGDOM ANIMALIA Cnidaria Mollusca Echinodermata Annelida Chordata KINGDOM 1234 31 Animalia (contains 31 phyla)

68 Fig. 13-26a, p. 374 PHYLUM CHORDATA Uro- and Cephalo-chordataVertebrataPHYLUM Chordata (contains 3 subphyla) 123 SUBPHYLUM VERTEBRATA Aves Chondrichthyes Mammalia Reptilia Amphibia Agnatha Osteichthyes SUBPHYLUM Vertebrata (contains 7 classes) 123 4 5 67

69 Fig. 13-26b, p. 374 CLASS OSTEICHTHYES Clupeiformes Gadiformes Perciformes Lophiiformes Pleuronectiformes CLASS Osteichthyes (contains about 37 orders) 1 2 3 4 37 ORDER PLEURONECTIFORMES Psettodidae Citharidae Bothidae Cynoglossidae Soleidae PleuronectidaeORDER Pleuronectiformes (contains 6 families) 1 2 34 5 6

70 Fig. 13-26b, p. 374 FAMILY PLEURONECTIDAE Hippoglossus Limanda Platichthys Parophrys Glyptocephalus FAMILY Pleuronectidae (contains 41 genera) 12 3 4 41 GENUS GLYPTOCEPHALUS cynoglossuszachirus GENUS Glyptocephalus (contains 2 species) 1 2 SPECIES zachirus Witch flounder Rex sole

71 Table 13-4, p. 375


Download ppt "Fig. 13-CO, p. 347. Fig. 13-1, p. 348 Fig. 13-2, p. 349."

Similar presentations


Ads by Google