Presentation is loading. Please wait.

Presentation is loading. Please wait.

Prokaryotic Cell “before” Nucleus (has no nucleus) No membrane bound organelles 3.5 billion years Unicellular Circular DNA Contain a cell wall Eukaryotic.

Similar presentations


Presentation on theme: "Prokaryotic Cell “before” Nucleus (has no nucleus) No membrane bound organelles 3.5 billion years Unicellular Circular DNA Contain a cell wall Eukaryotic."— Presentation transcript:

1 Prokaryotic Cell “before” Nucleus (has no nucleus) No membrane bound organelles 3.5 billion years Unicellular Circular DNA Contain a cell wall Eukaryotic Cell “true” nucleus Membrane bound organelles 1.5 billion years Both unicellular and multicellular Linear DNA Some have cell walls, some don't

2 Prokaryotic Cell “before” Nucleus (has no nucleus) No membrane bound organelles 3.5 billion years Unicellular Circular DNA Contain a cell wall Eukaryotic Cell “true” nucleus Membrane bound organelles 1.5 billion years Both unicellular and multicellular Linear DNA Some have cell walls, some don't

3

4 Kingdom Monera??? Archaebaceria and Eubacteria used to be in one kingdom which was called Kingdom Monera.

5 Kingdom Monera Archaebacteria Methanogens Swamps, Intestines Thermophiles Hydrothermal Vents Halophiles Salt Lake, Utah Eubacteria (peptidoglycan) Autotrophs or Heterotrophs

6 Archaebateria Eubacteria are different from Archaebacteria because they have peptidoglycan in their cell walls. Found in extreme environments like salt lakes and hot springs. Include methanogens, thermophiles and halophiles.

7 Characteristics Prokaryotes Microscopic (Eukaryotic cells are at least 10x bigger) Unicellular DNA is a single circular piece of DNA Asexual Reproduction –Binary Fission Genetic Exchange –Conjugation –transfer DNA through contact –Transformation – acquire DNA from dead bacteria –Transduction – DNA is transferred from one bacteria to another using a virus (genetic engineering) Metabolism –Aerobic –Anaerobic

8 http://highered.mcgraw- hill.com/sites/0072556781/stu dent_view0/chapter13/animati on_quiz_3.html http://highered.mcgraw- hill.com/sites/0072556781/student_view0/chapt er13/animation_quiz_2.html

9 Structure Pilus (Pili)- allows them to adhere to surfaces Flagellum – movement Cell Wall – Made of peptidoglycan; Used in medicine to identify type of bacterium using Gram Stain (pg. 472)

10 Gram Stain (pg. 529) Gram +  simple walls, large amount of peptidoglycan Gram -  less peptidoglycan, outer membrane contains lipopolysaccharides which are often toxic and provides additional protection  more resistant to antibiotics Many antibiotics (penicillens) inhibit synthesis of cross links in peptidoglycan and prevent formation of a functional wall Gram positive Gram negative

11 Gram Positive Organisms Aerobic, Gram-positive cocci Staphylococcus aureus (fig 1, 2, 3, 4)1234 Staphylococcus epidermidis (fig 1)1 Staphylococcus sp. (Coagulase-negative)(fig 1)1 Streptococcus pneumoniae (Viridans group)(fig 1, 2, 3)123 Streptococcus agalactiae (group B)(fig 1)1 Streptococcus pyogenes (group A)(fig 1, 2)1, 2 Enterococcus sp.(fig 1, 2, 3 )123 Aerobic, Gram-positive rods Bacillus anthracis (fig 1, 2 )12 Bacillus cereus (fig 1, 2)12 Bifidobacterium bifidum (fig 1)1 Lactobacillus sp. (fig 1, 2)12 Listeria monocytogenes (fig 1, 2)12 Nocardia sp.(fig 1, 2)12 Rhodococcus equi (coccobacillus)(fig 1)1 Erysipelothrix rhusiopathiae (fig 1)1 Corynebacterium diptheriae (fig 1, 2)12 Propionibacterium acnes (fig 1)1 Anaerobic, Gram-positive rods Actinomyces sp. (fig 1, 2)12 Clostridium botulinum (fig 1)1 Clostridium difficile (fig 1)1 Clostridium perfringens (fig 1, 2, 3)123 Clostridium tetani (fig 1, 2)12 Anaerobic, Gram-positive cocci Peptostreptococcus sp. (fig 1)1

12 Gram Negative Organisms Aerobic, Gram-negative cocci Neisseria gonorrhoeae (fig 1, 2, 3, 4)1234 Neisseria meningitidis (fig 1; false color of the bacterium., 2)1; false color of the bacterium.2 Moraxella catarrhalis (fig 1)1 Anaerobic, Gram-negative cocci Veillonella sp. (fig 1)1 Aerobic, Gram-negative rods Fastidious, Gram-negative rods –Actinobacillus actinomycetemcomitans (fig 1)1 –Acinetobacter baumannii(fig 1 really A. calcoaceticus)1 –Bordetella pertussis (fig 1, 2)12 –Brucella sp. (fig 1)1 –Campylobacter sp.(fig 1)1 –Capnocytophaga sp.(fig 1, 2)1,2 –Cardiobacterium hominis (fig 1) –Eikenella corrodens (fig 1) –Francisella tularensis (fig 1,)1, –Haemophilus ducreyi (fig 1, 2) 1,2 –Haemophilus influenzae (fig 1, 2)12 –Helicobacter pylori (fig 1, 2, 3, 4)1234 –Kingella kingae (fig ) –Legionella pneumophila (fig 1, 2, 3)123 –Pasteurella multocida (fig 1)1 Enterobacteriaceae (glucose-fermenting Gram-negative rods) –Citrobacter sp. (fig 1)1 –Enterobacter sp. (fig 1)1 –Escherichia coli (fig 1, 2)12 –Klebsiella pneumoniae (fig 1, 2)12 –Proteus sp. (fig 1)1 –Salmonella enteriditis (fig 1)1 –Salmonella typhi (fig 1)1 –Serratia marcescens (fig 1, 2)12 –Shigella sp. (fig 1)1 –Yersinia enterocolitica (fig 1)1 –Yersinia pestis (fig 1, 2)12 Oxidase-positive, glucose-fermenting Gram-negative rods –Aeromonas sp. (fig 1)1 –Plesiomonas shigelloides (fig 1) –Vibrio cholerae (fig 1, 2)12 –Vibrio parahaemolyticus (fig 1)1 –Vibrio vulnificus (fig 1)1 Glucose-nonfermenting, Gram-negative rods –Acinetobacter sp. (fig 1)1 –Flavobacterium sp. (fig 1) –Pseudomonas aeruginosa (fig 1, 2)12 –Burkholderia cepacia (fig 1)1 –Burkholderia pseudomallei (fig 1)1 –Xanthomonas maltophilia or Stenotrophomonas maltophila(fig 1)1 Anaerobic, Gram-negative rods Bacteroides fragilis (fig 1)1 Bacteroides sp. (fig 1)1 Prevotella sp. (fig 1)1 Fusobacterium sp. (fig 1, 2)12 Gram-negative spiral Spirillum minus (minor)- (fig 1)1

13 Nutrition Autotrophic –Photosynthetic –Chemoautotrophic (nitrogen fixers) Heterotrophic –Decomposer –Parasitic (Treponema pallidum)

14 Survival of the Fittest!!! Bacteria have been around for 3.5 billion years!! How???? Cell Walls Capsules (surrounds cell wall) Endospores : allow them to withstand drought, high temps., lack of food, etc. Super fast reproduction Asexual Reproduction, but can still acquire other genes Inhabit every place on Earth

15

16 Classification Arrangements –Strept : Chains –Staph : Clusters –Diplo : Pairs Shapes –Coccus : Spheres –Bacillus : Rods –Spirillum : Spirals

17 Importance to Humans??? Bacteria are used to make food –Pickles, buttermilk, cheese, sauerkraut, olives, vinegar, sourdough bread, beer, wine Bacteria can produce chemicals –Acetone, Butanol Important Recyclers in environment –Nitrogen cycle Bacteria can help clean up chemical spills Mining companies harvest copper or uranium by using Chemoautotrophic Bacteria are used to produce medicines –Insulin Bacteria cause disease –Produce toxins (Clostridium botulinum) –Metabolize their host (Mycobacterium tuberculosis)

18 DiseaseSymptomsBacteriumTrasmission Bubonic plagueFever, buboes, often fatal Yersinia pestisBite from infected flea CholeraSevere diarrhea & vomiting; fatal Vibrio choleraeContaminated Water CavitiesDestruction of minerals in tooth Streptococcus mutans Collection of bacteria in mouth Lyme DiseaseRash, pain, swelling in joints Borrelia burgdorferi Bite from infected tick ChlamydiaPainful urination, discharge, abdominal pain Chlamydia trachomatis Sexual contact GonorrheaPainful urination, discharge, abdominal pain Neisseria gonorrhoeae Sexual contact SyphilisChancres, fever, rash Treponema pallidum Sexual contact

19 Antibiotic Resistance Bacteria acquire genes that help the cell resist treatment using antibiotics Arises naturally in bacteria Occurs when weaker bacteria die off, but stronger ones survive and reproduce. Overuse and misuse of Antibiotics has increased Ab resistance among bacteria

20

21 Internet Resources Life History and Ecology of Bacteria Bacteria CELLS alive! Table of Contents archaebacteria

22 Compare and contrast Virus and Bacteria


Download ppt "Prokaryotic Cell “before” Nucleus (has no nucleus) No membrane bound organelles 3.5 billion years Unicellular Circular DNA Contain a cell wall Eukaryotic."

Similar presentations


Ads by Google