Presentation is loading. Please wait.

Presentation is loading. Please wait.

Low Power Processor --- For Mobile Devices Ziwei Zheng Wenjia Ouyang.

Similar presentations


Presentation on theme: "Low Power Processor --- For Mobile Devices Ziwei Zheng Wenjia Ouyang."— Presentation transcript:

1 Low Power Processor --- For Mobile Devices Ziwei Zheng Wenjia Ouyang

2 Agenda Introduction Roadmap The trend during past years The recent technologies Future

3 User Experience Perspective For Low Power Mobile Devices: Active time of the device o Time interval of performing a well defined set of tasks (defined use mode: audio play, voice call, web browsing, video playback, etc ) between two battery charges Standby time of the device o Time interval between two battery charges when the device is fully functional ready to be activated, but does not perform any user driven tasks.

4 What kind of processors are available for mobile devices? Qualcomm Snapdragon o Nokia Lumia 635 Samsung Exynos o Samsung Galaxy S4 MediaTek o Lenovo NVIDIA's Tegra Intel Cortex

5 Reference:Bohr, Mark, and Kaizad Mistry. "Intel’s revolutionary 22 nm transistor technology." Rob Willoner at Innovation (2011).

6 Roadmap--Intel

7 Roadmap--ARM Reference: ARM Roadmap MWC 2013 http://forwardthinking.pcmag.com/none/310089-mobile-chip-makers-the-basic-building-blocks

8 Power Consumption in Digital Systems P total =P active +P leakage Pactive = Pinternal + Pswitching = Pinternal + αCV2f V – voltage f – frequency C – capacitive load α – activity factor Pleakage= static power

9 P leakage ———— Intel: High-K & Tri-Gate Pactive ———— Symmetric multiprocessing P active ———— Nvidia vSMP P active ———— Qualcomm aSMP 9

10 Intel: High-K Metal Gate Intel introduced a High-K Metal Gate technology in 2007 for 45nm transistors, to create transistor gate of lower leakage current. o Further reduction in the thickness of the layer o Silicon dioxide was replaced with a thin layer of material which has a high level of dielectric k.

11 High-K dielectric reduces leakage substantially. o less unwanted current flow o easier manufacturing process Reference: Kamata, Yoshiki. "High-k/Ge MOSFETs for future nanoelectronics." Materials today 11.1 (2008): 30-38.

12 Intel: Tri-gate Technology Recently Intel announced production of a new transistor technology called “3D Tri-Gate” that incorporated a three dimensional structure. 3D Tri-Gate transistors enable chips to operate at lower voltage with lower leakage.

13 Driven by the need for higher on- off speeds and reduced power consumption, planar transistor size had been reduced to nanometer. Growing leakage currents from gate to channel. Form conducting channels on three sides of a vertical fin structure. The gate wraps around source and drain “fins” that protrude upward. Multiple fins connected together to increase total drive strength for higher performance Increased surface area between gate and the inversion layer significantly improve gate control.

14 Current-Voltage Characteristics Tri-Gate transistors provide a steeper sub- threshold slope that reduces leakage current Reference:Bohr, Mark, and Kaizad Mistry. "Intel’s revolutionary 22 nm transistor technology." Rob Willoner at Innovation (2011).

15 P leakage ———— Intel: High-K & Tri-Gate Pactive ———— Symmetric multiprocessing P active ———— Nvidia vSMP P active ———— Qualcomm aSMP 15

16 Symmetric multiprocessing (SMP) Symmetric multiprocessor system hardware and software architecture where two or more identical processors connect to a single, shared main memory. Each processor ave full access to all I/O devices, and are controlled by a single operating system instance that treats all processors equally, reserving none for special purposes. Most multiprocessor systems today use an SMP architecture. 16

17 Symmetric multiprocessing (SMP) SMP systems shared Main Memory, usually each processor has an associated private cache to speed-up the MM data access and to reduce the system bus traffic. 17

18 P leakage ———— Intel: High-K & Tri-Gate Pactive ———— Symmetric multiprocessing P active ———— Nvidia vSMP P active ———— Qualcomm aSMP 18

19 19Nvidia Tegra 3 Variable Symmetric Multiprocessing 

20 Tegra 3: “companion” core The companion core is manufactured with a special low power silicon process, that uses less power at low clock rate but does not scale well to high clock rates. The goal is for a mobile phone or tablet to be able to power down all the normal cores and run on only the companion core, using comparatively little power, during standby mode.

21 Active Standby mode "Companion" core, which will handle low frequency tasks in the background. Each of the five, count them, five, not four, five cores are identical ARM Cortex A9 CPUs, each of them enabled and disables via aggressive power gating based on work load. (aka when they're needed, they're fired up.) First four cores are not aware of the fifth, but automatically take advantage of it - this saving both software efforts and new coding requirements as it flows. 21

22 Optimized For Key Mobile Use Cases 80% of time in active standby state 20% of time in intensive mobile application Think about your device sitting in your pocket as “Active Standby”. Processor is either running background tasks or low performance applications that do not require user interactions. Example: receive notification, send information to server. 22

23 Power Consumption Why combine fast process technologies and low power process technologies? Transistors on fast process technologies consume high leakage power very fast switching times normal voltage levels Transistors on low power process technologies low leakage power slower switching times low voltage levels 23

24 Power Consumption Reference: nvidia white paper Variable SMP – A Multi-Core CPU Architecture for Low Power and High Performance 24

25 Power Advantage 4 + 1 Cores Low Power Companion Core Reference: nvidia white paper Variable SMP – A Multi-Core CPU Architecture for Low Power and High Performance

26 Summary Variable Symmetric Multiprocessing(vSMP) not only minimized active standby state power consumption, but also delivers on-demand maximum four core performance. In addition to four main high-performance CPU cores, nvidia has a fifth low power, low leakage CPU core called ‘Companion’ CPU core that is optimized to minimize active standby state power consumption, and handle less demanding processing tasks. 26

27 P leakage ———— Intel High-K Metal Gate Pactive ———— Symmetric multiprocessing P active ———— Nvidia vSMP P active ———— Qualcomm aSMP 27

28 Qualcomm Snapdragon 800 asynchronous SMP (aSMP) design. Unlike synchronous SMP designs where all cores must run at the same frequency and voltage when operational, the asynchronous SMP power design provides independent clocking and voltage per core, allowing each to work independently.

29 Asynchronous SMP (aSMP) 29

30 Asynchronous SMP (aSMP) Provides Highly efficient design this substantial power savings by intelligently adjusting Technology over Traditional SMP performance to suit the needs of the Application. Asynchronous SMP is a sort of dynamic power sensing chip architecture that automatically applies different voltages to each of the four cores depending require computing loads and this control peak performance per core. When a core performs a less important and low computing load requirement jobs, it inputs low voltages to make the best use of power budget. 30

31 vSMP vs aSMP vSMP has more cores meaning extra area. vSMP requires more software customize meaning limited market. aSMP may consume same power as vSMP as long as has aSMP has better design. Qualcomm has other saving power technology. 31

32 Future Trend: The Next Step Smaller transistor size Multi-core: o Quad-core to Oct-core and Hex-core

33 Let’s Look Out to Decades 3D chip stacking technology: o keeping a signal on-chip can reduce its power consumption. o Shorter wires reduce power consumption by producing less parasitic capacitance.

34 Questions? Thanks


Download ppt "Low Power Processor --- For Mobile Devices Ziwei Zheng Wenjia Ouyang."

Similar presentations


Ads by Google