Download presentation

Published byFerdinand Warren Modified over 3 years ago

1
**Línuleg bestun Hámörkun, dæmi Lágmörkun, dæmi**

Kafli 2Tn í Chase … Línuleg bestun (Linear Programming) með Excel Solver Línuleg bestun Hámörkun, dæmi Lágmörkun, dæmi 2

2
Línuleg bestun Notuð við flókin ákvörðunarvandamál þegar aðföng (forðar) eru takmarkaðir og geta verið flöskuhálsar. LP reiknilíkön hafa markfall (objective function) Hámörkun hagnaðar eða lágmörkun kostnaðar m.t.t. skorða á aðföngum gefur bestu gildi á ákvarðanabreytum. Bæði markfall og skorður verða að vera línuleg föll. Breytur verða að vera samfelldar (ekki heiltölur) og ekki neikvæðar. 3

3
**Markfall (Objective Function)**

Max (eða Min) Z = C1X1 + C2X CnXn Cj eru stuðlar sem lýsa framlegð eða hagnaði eða kostnaði á einingu af Xj sem getur t.d. verið framleitt magn af vöru. Z er heildar framlegð eða hagnaður eða kostnaður af öllum vörum. 5

4
**Skorður (Constraints)**

A11X1 + A12X A1nXnB1 A21X1 + A22X A2nXn B2 : AM1X1 + AM2X AMnXn=BM Aij er þörf vöru nr. j (ákvarðanabreytu Xj) fyrir aðföng (resource) nr. i. Bi lýsir hve mikið er fyrir hendi af aðföngum nr. i. Skorðurnar geta verið , , eða = . 5

5
**Breytur ekki neikvæðar (Non-Negativity)**

X1,X2, …, Xn 0 Öll LP-líkön byggja á því að breyturnar séu ekki neikvæðar. Við teljum þessar kröfur þó ekki með skorðum. 5

6
**Dæmi um hámörkun Now let’s formulate this problem.**

LawnGrow Manufacturing Company must determine the mix of its commercial riding mower products to be produced next year. The company produces two product lines, the Max and the Multimax. The average profit is $400 for each Max and $800 for each Multimax. Fabrication and assembly are limited resources. There is a maximum of 5,000 hours of fabrication capacity available per month (Each Max requires 3 hours and each Multimax requires 5 hours). There is a maximum of 3,000 hours of assembly capacity available per month (Each Max requires 1 hour and each Multimax requires 4 hours). Question: How many of each riding mower should be produced each month in order to maximize profit? Now let’s formulate this problem. 6

7
Markfall If we define the Max and Multimax products as the two decision variables X1 and X2, and since we want to maximize profit, we can state the objective function as follows: 8

8
**Skorður Given the resource information below from the problem:**

We can now state the constraints and non-negativity requirement a: Note that the inequalities are less-than-or-equal since the time resources represent the total available resources for production. 9

9
**Lausn Produce 715 Max and 571 Multimax per month**

for a profit of $742,800. 16

10
Dæmi um lágmörkun HiTech Metal Company is developing a plan for buying scrap metal for its operations. HiTech receives scrap metal from two sources, Hasbeen Industries and Gentro Scrap in daily shipments using large trucks. Each truckload of scrap from Hasbeen yields 1.5 tons of zinc and 1 ton of lead at a cost of $15, Each truckload of scrap from Gentro yields 1 ton of zinc and 3 tons of lead at a cost of $18,000. HiTech requires at least 6 tons of zinc and at least 10 tons of lead per day. Question: How many truckloads of scrap should be purchased per day from each source in order to minimize scrap metal cost? Now let’s formulate this problem. 17

11
**Markfall Minimize Z = 15,000 X1 + 18,000 X2 Hasbeen Gentro Where**

If we define the Hasbeen truckloads and the Gentro truckloads as the two decision variables X1 and X2, and since we want to minimize cost, we can state the objective function as follows: Minimize Z = 15,000 X1 + 18,000 X2 Where Z = daily scrap cost X1 = truckloads from Hasbeen X2 = truckloads from Gentro Hasbeen Gentro 18

12
**Skorður Given the demand information below from the problem:**

We can now state the constraints and non-negativity requirement a: 1.5X X2 > 6 (Zinc/tons) X X2 > 10 (Lead/tons) X1, X2 > 0 (Non-negativity) Note that the inequalities are greater-than-or-equal since the demand information represent the minimum necessary for production. 19

13
**Lausn Order 2.29 truckloads from Hasbeen and 2.57**

truckloads from Gentro for daily delivery. The daily cost will be $80,610. 25

14
Túlkun bestu lausnar Gildi á ákvörðunarbreytum og markfalli, t.d. Hve mikið á að framleiða og hvað það gefur í heildar framlegð Slakar = ónotuð aðföng Skuggaverð (stök í markfallsröð undir slakbreytum) = jaðarbreyting markfalls m.v. jaðarbreytingu á aðföngum (hægri hlið), þ.e. hvers virði er viðbótareining aðfanga.

15
**Dæmi: Pakkningaval í fiskvinnslu**

Similar presentations

Presentation is loading. Please wait....

OK

19 Linear Programming CHAPTER

19 Linear Programming CHAPTER

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on online job portal project Ppt on obesity management in canada Ppt on earthquake in china Ppt on water activity in food Ppt on polluted ganga Ppt on eddy current brakes ppt Download ppt on turbo generator power Ppt on 64 point fourier transform chip Ppt on trade fair in china Ppt on ready to serve beverages direct