Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Optimization – Part I Applications of Optimization To Operations Management For this session, the learning objectives are: Learn what a Linear Program.

Similar presentations


Presentation on theme: "1 Optimization – Part I Applications of Optimization To Operations Management For this session, the learning objectives are: Learn what a Linear Program."— Presentation transcript:

1 1 Optimization – Part I Applications of Optimization To Operations Management For this session, the learning objectives are: Learn what a Linear Program is. Learn how to formulate a Linear Program and solve it using Excels Solver. Using Solver to solve a Make-or-Buy Problem. Using Solver to solve a Transshipment Problem (Product Distribution).

2 2 Optimization involves the maximization or minimization of an objective subject to a set of constraints. Every copy of Microsoft Excel includes Solver, which enables you to solve the following types of optimization problems: a Linear Program, an Integer Linear Program, a Nonlinear Program. The next page summarizes the use of Excels Solver. Excels Solver

3 3

4 4 DuPunt, Inc. manufactures three types of chemicals. For the upcoming month, DuPunt has contracted to supply its customers with the following amounts of the three chemicals: DuPunts production is limited by the availability of processing time in two chemical reactors. Each chemical must be processed first in Reactor 1 and then in Reactor 2. The following table provides the hours of processing time available next month for each reactor and the processing time required in each reactor by each chemical: Because of the limited availability of reactor processing time, DuPunt has insufficient capacity to meet its demand with in-house production. Consequently, DuPunt must purchase some chemicals from vendors having excess capacity and resell them to its own customers. The following table provides each chemicals in-house production cost and outside purchase cost: DuPunts objective is to fill its customers orders with the cheapest combination of in-house production and outside purchases. In short, DuPunt must decide how much of each chemical to produce in-house (i.e., make) and how much of each chemical to purchase outside (i.e.,buy). A Make-or-Buy Problem

5 5 Nonnegativity Constraints Formulation of the Make-or-Buy Problem as a Linear Program Minimize Total Costs Contracted Sales Reactor Availabilities Define the following 6 decision variables:

6 6

7 7

8 8 A Transshipment Problem Consider a firm that for simplicity produces a single product. The firm has 3 plants (Tokyo, Hong Kong, and Bangkok), 2 warehouses (Seattle and Los Angeles), and 4 customers (Chicago, New York, Atlanta, and Dallas) geographically dispersed as diagrammed below. The firm ships its product from a plant to a warehouse and then on to a customer. In the diagram below: The number to the left of each plant represents the plants supply. The number to the right of each customer represents the customers demand. The number appearing along an arrow from a plant to a warehouse or from a warehouse to a customer represents the corresponding unit shipping cost. For example, the unit shipping cost from Bangkok to Seattle is $25 per unit. The firm wants to distribute its product at minimum cost. 72 = Total Supply Total Demand = 70

9 9 Nonnegativity Constraints Formulation of the Transshipment Problem as an LP Min Total Shipping Costs Supply Constraints Transshipment Constraints Demand Constraints Let AZ denote the amount shipped from location A to location Z. As examples, TL denotes the amount shipped from Tokyo to Los Angeles, and SN denotes the amount shipped from Seattle to New York.

10 10 Solving the Transshipment LP Using Excels Solver The Spreadsheet Before Optimization

11 11 Solving the Transshipment LP Using Excels Solver The Spreadsheet After Optimization

12 12 INTRODUCTION TO THE BLENDING PROBLEM In many businesses and industrial environments, the goal is to find the optimal recipe for blending a variety of ingredients to obtain a product that meets lower and/or upper limits on a variety of characteristics. The table below summarizes several applications.

13 13 A Blending Problem Harrus Feeding Companys Blending Problem The Harrus Feeding Company (HFC) operates a feedlot to which cattle are brought for the final fattening process. Since HFCs cattle population averages about 100,000, it is important for HFC to feed the cattle in a way that meets their nutritional requirements at minimum cost. The mixture HFC feeds the cattle is blend of four feedstuffs: corn, wheat, barley, and hay. The table below provides the relevant dietary and cost data per pound of each feedstuff, along with a steers daily nutritional requirement. For example, for each pound of corn a steer consumes, it receives 2 grams of fat, 20 grams of protein, 4 milligrams of iron, and 200 calories. a) Assuming a steers daily consumption of feedstuffs must be exactly 24 pounds, formulate and solve a linear program for determining the dietary blend that satisfies HFCs daily requirements at minimum cost. b) How would you modify your formulation if a steers daily consumption of feedstuffs must be in the range of pounds? c) How would you modify your formulation if there were no daily limit on the pounds of feedstuffs that a steer must consume? d) Can the formulations in part (a) and part (c) result in distinct optimal solutions? Can you anticipate a potential problem with the optimal solution to the linear program in part (c)? The exercise below is designed to review the basics of formulating a linear program and solving it using Solver.


Download ppt "1 Optimization – Part I Applications of Optimization To Operations Management For this session, the learning objectives are: Learn what a Linear Program."

Similar presentations


Ads by Google