Presentation is loading. Please wait.

Presentation is loading. Please wait.

Slava Kashcheyevs (Uni Latvia) Thermo 2013, RWTH Aachen, November 25, 2013 VK and J.Timoshenko, Phys. Rev. Lett. 109, 216801(2012) L. Fricke et al, Phys.

Similar presentations


Presentation on theme: "Slava Kashcheyevs (Uni Latvia) Thermo 2013, RWTH Aachen, November 25, 2013 VK and J.Timoshenko, Phys. Rev. Lett. 109, 216801(2012) L. Fricke et al, Phys."— Presentation transcript:

1 Slava Kashcheyevs (Uni Latvia) Thermo 2013, RWTH Aachen, November 25, 2013 VK and J.Timoshenko, Phys. Rev. Lett. 109, 216801(2012) L. Fricke et al, Phys. Rev. Lett. 110, 126803 (2013) S. S Fahlvik Svensson et al, New J Phys 15, 105011 (2013)

2

3 Quantum coherence Coulomb interactions Non- equillibrium Coulomb interactions

4  Single spinless level coupled to a Fermi lead  Exactly solvable for any  Phase memory can be neglected if: non-Markovian effects if violated! - timescale of decoupling, e.g. equilibrium (coupling=const) equilibrium (coupling=const) Jauho,Meir, Wingreen’94

5 Flensberg, Pustilnik, Niu’1999 “Plunger-to-barrier” ratio (crosscoupling strength) Δ ptb breaks particle- hole symmetry! VK, Timoshenko, ’2013

6 adaiabtic decoupled Non-perturbative, non-Markovian asymptotics dominates the tail!

7 V1V1 1 0 V2V2 Decouple Couple LOAD UNLOAD Moving the decoupling point determines the captured charge (=moves ) V2V2 I/(ef) 0 1 capture 0 capture 1  capture  isolate  eject Data: L.Fricke, Uni.Hannover

8 Quantum coherence Non- equillibrium

9 Quantum coherence Coulomb interactions Non- equillibrium Coulomb interactions

10 Need both excitation and backtunneling: Balancing the interferometer!

11  Non-adiabatic excitation (Landau-Zener)  Adiabatic “elevator”

12 Quantum coherence Coulomb interactions Non- equillibrium

13 Quantum coherence Coulomb interactions Non- equillibrium

14 Quantum coherence Coulomb interactions Non- equillibrium - ?

15  Adiabatic side of the disequlibration crossover:

16 Load Hold Detect!

17  Rate equations for the slow degree of freedom:  detailed balance:  Transitions n-1↔n “freeze” sequentially as Fermi function See M. Esposito’s talk!

18  Final capture probability: follows equilibium Non-adiabatic decay Adiabatic constant Backtunneling onset VK and B.Kaestner, Phys. Rev. Lett. 104, 186805 (2010)

19 Data: PTB group; Hohls et al, PRL’2012 Rescaled gate voltage Simple fitting formulas if backtunneling dominates

20  Generalized grand canonical (thermal)  Phenomenological parametric ansatz  Generalized decay cascade (athermal) L. Fricke et al, Phys. Rev. Lett. 110, 126803 (2013)

21  Equlibrium Anderson model is rich & well-studied  RG for gradual quenches?  Dynamical scaling near “quantum critical” point?  Spin and orbital intradot excitations: ◦ Spin-charge separation in mixed-valence/Kondo transition ◦ See talk by Heiner Linke! Quantum coherence Coulomb interactions Non- equillibrium VK, Karrasch, Hecht, Weichselbaum, Meden, Schiller PRL’09

22

23 S. S Fahlvik Svensson et al, New J Phys 15, 105011 (2013)


Download ppt "Slava Kashcheyevs (Uni Latvia) Thermo 2013, RWTH Aachen, November 25, 2013 VK and J.Timoshenko, Phys. Rev. Lett. 109, 216801(2012) L. Fricke et al, Phys."

Similar presentations


Ads by Google