Download presentation

Presentation is loading. Please wait.

Published byKaylee Lomas Modified about 1 year ago

1
Kondo Physics from a Quantum Information Perspective Pasquale Sodano International Institute of Physics, Natal, Brazil 1

2
Abolfazl Bayat UCL (UK) Sougato Bose UCL (UK) Henrik Johannesson Gothenburg (Sweden) 2

3
References An order parameter for impurity systems at quantum criticality A. Bayat, H. Johannesson, S. Bose, P. Sodano To appear in Nature Communication. Entanglement probe of two-impurity Kondo physics in a spin chain A. Bayat, S. Bose, P. Sodano, H. Johannesson, Phys. Rev. Lett. 109, 066403 (2012) Entanglement Routers Using Macroscopic Singlets A. Bayat, S. Bose, P. Sodano, Phys. Rev. Lett. 105, 187204 (2010) Negativity as the Entanglement Measure to Probe the Kondo Regime in the Spin-Chain Kondo Model A. Bayat, P. Sodano, S. Bose, Phys. Rev. B 81, 064429 (2010) Kondo Cloud Mediated Long Range Entanglement After Local Quench in a Spin Chain P. Sodano, A. Bayat, S. Bose Phys. Rev. B 81, 100412(R) (2010) 3

4
Contents of the Talk Negativity as an Entanglement Measure Single Kondo Impurity Model Application: Quantum Router Two Impurity Kondo model: Entanglement Two Impurity Kondo model: Entanglement Spectrum 4

5
Entanglement of Mixed States Entangled states: How to quantify entanglement for a general mixed state? There is not a unique entanglement measure 5 Separable states:

6
Negativity Separable: Valid density matrix Entangled: Negativity: 6

7
Gapped Systems Ground state Excited states The intrinsic length scale of the system impose an exponential decay 7

8
Gapless Systems Ground state Continuum of excited states There is no length scale in the system so correlations decay algebraically 8

9
Kondo Physics Despite the gapless nature of the Kondo system, we have a length scale in the model 9

10
Realization of Kondo Effect Semiconductor quantum dots D. G. Gordon et al. Nature 391, 156 (1998). S.M. Cronenwett, Science 281, 540 (1998). Carbon nanotubes J. Nygard, et al. Nature 408, 342 (2000). M. Buitelaar, Phys. Rev. Lett. 88, 156801 (2002). Individual molecules J. Park, et al. Nature 417, 722 (2002). W. Liang, et al, Nature 417, 725–729 (2002). 10

11
Kondo Spin Chain E. S. Sorensen et al., J. Stat. Mech., P08003 (2007) 11

12
Entanglement as a Witness of the Cloud A B Impurity L 12

13
Entanglement versus Length Entanglement decays exponentially with length 13

14
Scaling Kondo Regime: Dimer Regime: A B Impurity L N-L-1 14

15
Scaling of the Kondo Cloud Kondo Phase: Dimer Phase: 15

16
Application: Quantum Router Converting useless entanglement into useful one through quantum quench 16

17
Simple Example 17

18
With tuning J’ we can generate a proper cloud which extends till the end of the chain Extended Singlet 18

19
Quench Dynamics 19

20
1- Entanglement dynamics is very long lived and oscillatory 2- maximal entanglement attains a constant values for large chains 3- The optimal time which entanglement peaks is linear Attainable Entanglement 20

21
For simplicity take a symmetric composite: Distance Independence 21

22
Optimal Quench 22

23
Optimal Parameter 23

24
K: Kondo (J2=0) D: Dimer (J2=0.42) Clouds are absent Non-Kondo Singlets (Dimer Regime) 24

25
Asymmetric Chains 25

26
Symmetric geometry gives the best output Entanglement in Asymmetric Chains 26

27
Entanglement Router 27

28
Two Impurity Kondo Model 28

29
Two Impurity Kondo Model RKKY interaction 29

30
Impurities Entanglement 30

31
Entanglement of Impurities Entanglement can be used as the order parameter for differentiating phases 31

32
Scaling at the Phase Transition The critical RKKY coupling scales just as Kondo temperature does 32

33
Entropy of Impurities Triplet Identity Singlet 33

34
Impurity-Block Entanglement 34

35
Block-Block Entanglement 35

36
2 nd Order Phase Transition 36

37
Order Parameter for Two Impurity Kondo Model 37

38
Order Parameter Order parameter is: 1- Observable 2- Is zero in one phase and non-zero in the other 3- Scales at criticality Landau-Ginzburg paradigm: 4- Order parameter is local 5- Order parameter is associated with a symmetry breaking 38

39
Entanglement Spectrum Entanglement spectrum: 39

40
Entanglement Spectrum N A =N B =400 J’=0.4 N A =600, N B =200 J’=0.4 40

41
Schmidt Gap Schmidt gap: 41

42
Thermodynamic Behaviour J’=0.4J’=0.5 In the thermodynamic limit Schmidt gap takes zero in the RKKY regime 42

43
Diverging Derivative In the thermodynamic limit the first derivative of Schmidt gap diverges 43

44
Diverging Kondo Length 44

45
Finite Size Scaling 45

46
Schmidt Gap as an Observable 46

47
Summary Negativity is enough to determine the Kondo length and the scaling of the Kondo impurity problems. By tuning the Kondo cloud one can route distance independent entanglement between multiple users via a single bond quench. Negativity also captures the quantum phase transition in two impurity Kondo model. Schmidt gap, as an observable, shows scaling with the right exponents at the critical point of the two Impurity Kondo model. 47

48
References An order parameter for impurity systems at quantum criticality A. Bayat, H. Johannesson, S. Bose, P. Sodano To appear in Nature Communication. Entanglement probe of two-impurity Kondo physics in a spin chain A. Bayat, S. Bose, P. Sodano, H. Johannesson, Phys. Rev. Lett. 109, 066403 (2012) Entanglement Routers Using Macroscopic Singlets A. Bayat, S. Bose, P. Sodano, Phys. Rev. Lett. 105, 187204 (2010) Negativity as the Entanglement Measure to Probe the Kondo Regime in the Spin-Chain Kondo Model A. Bayat, P. Sodano, S. Bose, Phys. Rev. B 81, 064429 (2010) Kondo Cloud Mediated Long Range Entanglement After Local Quench in a Spin Chain P. Sodano, A. Bayat, S. Bose Phys. Rev. B 81, 100412(R) (2010) 48

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google