Presentation is loading. Please wait.

Presentation is loading. Please wait.

KOMPOSISI DAN SIFAT BAHAN PANGAN Water Protein Carbohydrate Lipida Vitamin & Mineral Komponen Alami: Komponen Tambahan: Emulsifier Antioxidant Preservative.

Similar presentations


Presentation on theme: "KOMPOSISI DAN SIFAT BAHAN PANGAN Water Protein Carbohydrate Lipida Vitamin & Mineral Komponen Alami: Komponen Tambahan: Emulsifier Antioxidant Preservative."— Presentation transcript:

1 KOMPOSISI DAN SIFAT BAHAN PANGAN Water Protein Carbohydrate Lipida Vitamin & Mineral Komponen Alami: Komponen Tambahan: Emulsifier Antioxidant Preservative Thickener Sweetener Etc. MUTU & KEAMANAN PANGAN Enzim Antioksidan Asam PigmenCitarasa

2 KARBOHIDRAT 1. PENDAHULUAN 2. KARBOHIDRAT DALAM BAHAN PANGAN 3. KLASIFIKASI DAN STRUKTUR KIMIA 4. REAKSI KIMIA KARBOHIDRAT 5. SIFAT FUNGSIONAL KARBOHIDRAT

3 1. PENDAHULUAN 75 % of Biological World 80 % of the Calorie Intake of humankind  75 – 80 % starch In USA : Composition of Calorie Intake  Carbohydrate : 46% 47 % Starch 52% Sucrose  Fats : 42%  Protein : 12% Rumus Umum : C x (H 2 O) y Modifikasi struktur  Sifat Fungsional

4 2. KARBOHIDRAT DALAM BAHAN PANGAN Karbohidrat utama dalam : animal : glucose, glycogen milk: lactose plant : cellulose, starch seaweed: alginate, carrageenan, agar

5 2. KARBOHIDRAT DALAM BAHAN PANGAN FoodSugar (%) Coke Crackers Ice Cream Orange Juice Cake (dry mix)

6 Sugar in Fruits : Fruit Free Sugar (%) GlucoseFructoseSucrose Apple Grape Peach Pear Strawberry

7 Sugar in Vegetables: Vegetables Free Sugar (%) GlucFrucSuc Broccoli Carrot Cucumber Spinach Sweetcorn Tomato

8 Sugar in Legumes : Legumes Free Sugar (%) GlucFrucSuc Snap bean Lima Bean Pea

9 Sugar in Fruits (per 100 gram) Macam Buah Jumlah Gula (%) Jenis Gula (g) Energi (kcal) GlucFrucSuc Kurma Pisang Kismis Apel Nanas Anggur Pear Jeruk Manis Mangga Blewah *) *) 57 *) *) 73 *) 30 Sumber : Food and Nutrition Encyclopedia (1994) *) Daftar Analisis Bahan Makanan (1992)

10 3. KLASIFIKASI DAN STRUKTUR KIMIA Photosynthesis Carbohydrates are synthesised in green plants by photosynthesis. Solar energy is absorbed by the green pigment in plants, chlorophyll. This energy is used to drive many enzyme-catalysed processes. The overall effect is to reduce carbon dioxide to carbohydrates and oxidise water to oxygen: Lingkungan TanamanLingkungan

11 CARBOHYDRATE C x (H2O) y Mono saccharides POLY SACCHARIDES Di saccharides Hexose (C-6) Pentose (C-5) a.D-Glucose b.D-Galactose c.D-Mannose d.D-Fructose 1.Xylose 2.Arabinose 3.Ribose Sucrose (a+d) Lactose (a+b) Maltose (a+a) ->  Cellobiose (a+a) ->  Oligo saccharides Rafinose (b+a+d) Stachyose (b+b+a+d) Verbacose Cellulose (-> a) Starch (-> a) Chitin Agar (->b) Carrageenan (->b) Alginat

12 POLYSACCHARIDES STARCH NON-STARCH POLYSACCHARIDES Alginate Carrageenan Agar Furcellaran Daratan: Cellulose Pectin Perairan: Chitosan Gum Lainnya

13 Struktur Kimia C OH H C C C C C H H H HO OH H H O H = O H HO OH H CH 2 OH H H  -D-Glukosa (Aldosa) (Aldohexose) Gugus Karbonil (CO) Gugus Aldehid (CHO) = gugus reduksi Atom C asimetris terjauh dari karbonil (CO) Sebagai dasar penamaan D (OH dikanan) dan L (OH di kiri) H OH 1  Atom C Chiral

14 Struktur Kimia

15 C OH H C C C C C H H H HO OH H H O H = O H HO OH H CH 2 OH H H  -D-Glukosa Konfigurasi Haworth Aldehydo-D-Glukose C OH H C C C C C H H H HO OH O H H H  -D-Glucopyranosa

16 Struktur Kimia C OH H C C C C C H H H HO OH H H O H =  -D-Glukosa (Aldosa) Gugus Karbonil (CO) Gugus Aldehid (CHO) = gugus reduksi C OH H C C C C C H H H HO OH H H OHOH H H Reduksi Sorbitol Na-Amalgam Li-Al-hydride hydrogenation

17 Struktur Kimia C OH H C C C C C H H H HO OH H H O H =  -D-Glukosa (Aldosa) (Hexose) (C 6 H 12 O 6 ) Gugus Karbonil (CO) Gugus Aldehid (CHO) = gugus reduksi C O H C C C C C H H HO OH H H H H =  -D-Fruktosa (Ketosa) (Hexulose) (C 6 H 12 O 6 ) Gugus Keton R O H C CHO = R = H  Aldehyde R = CH 2 OH  Keton Saccharose group

18 Struktur Kimia Carbonyl group Keton Aldehid Aldehydes are readily oxidised to carboxylic acids: If copper (II) (blue Cu2+) is used as the oxidising agent it is converted into copper (I) which forms red copper oxide (Cu2O) as a precipitate. This is how Benedict’s reagent and Fehling’s solution are used to test for aldehydes and reducing sugars.

19 Struktur Kimia

20 O H HO OH H CH 2 OH O H HO OH H CH 2 OH O HO H OH H CH 2 OH H H H H H H  -D-Glukosa  -D-Manosa  -D-Galaktosa O OH CH 2 OH OHCH 2 H OH H  -D-Fructose H MONOSAKARIDA    

21 O H HO OH O H CH 2 OH H H  -D-Maltosa (Glukosa-  -(1  4)-Glukosa) O H OH H CH 2 OH H H DISAKARIDA  -D-Glukosa terdiri atas 2 molekul glukosa dari hydrolysis pati oleh  -amylase gula reduksi

22 O Lactosa Galaktose-  -(1  4)-Glukosa) O H OH H CH 2 OH H H DISAKARIDA  -D-Glukosa terdiri atas Galaktosa dan Glukosa terdapat pada susu : Mamalia : 2 – 8.5% Cow and Goat : 4.5 – 4.8% Human : 7 % gula reduksi O HO H OH H CH 2 OH H H  -D-Galaktosa

23 Sukrosa Glukosa-  -(1  2)-Fruktosa) DISAKARIDA terdiri atas Glukosa dan Fruktosa terdapat pada cane atau beet gula non-reduksi table sugar O H HO OH O H CH 2 OH H H  -D-Glukosa O OH CH 2 OH OHCH 2 OH H  -D-Fructose H

24 O HO H O H CH 2 OH H O H OH H CH 2 OH H H CELLULOSE  -D-Glukosa n POLISAKARIDA ikatan-  -(1  4)-Glikosidik) OH O A A B B O

25 POLISAKARIDA

26

27 REAKSI-REAKSI KARBOHIDRAT 1. HYDROLYSIS 2. NON-ENZYMATIC BROWNING As shown in Table 4.29, the C1 and Cx factors, which were found to be endo- and exo-1,4-β-glucanases respectively, hydrolyze cellulose to cellobiose. Since the C1 factor is increasingly inhibited by its product, a cellobiase is needed so that cellulose breakdown is not rapidly brought to a standstill. However, cellobiase is also subject to product inhibition. Therefore, complete cellulose degradation is possible only if cellobiase is present in large excess or the glucose formed is quickly eliminated.

28 REAKSI-REAKSI KARBOHIDRAT HYDROLYSIS : Pembuatan HFCS POLYSACCHARIDES Acid Treatment Heat Treatment Enzyme Treatment PRODUCTS HFCS

29 4. REAKSI-REAKSI KARBOHIDRAT HYDROLYSIS : Fermentasi Tape BAHAN BAKU Fermentation Jenis Mikrobia Suhu Waktu PRODUCTS Ketela Pohoh Ketan Tape singkong Tape Ketan Starch Glucose Alcohol Acid

30 BROWNING ENZIMATIS NON-ENZIMATIS Reaksi Enzimatis Dipengaruhi oleh : Substrat Enzim Suhu Waktu Reaksi Maillard Karamelisasi Reaksi Gula & Protein Dipengaruhi oleh : Jenis Gula Suhu Waktu Pemanasan Gula Dipengaruhi oleh : Suhu Waktu Ascorbic acid oxidation

31 BROWNING Reaksi Maillard Ilmuwan Perancis : Louis Maillard (1912)  glucose + glycine Carbonyl – Amine Reaction  action of amino acids/protein on reducing sugars Related to aroma, taste and color Roasting of coffee and cacao beans, baking of bread and cakes, toasting of cereals, cooking of meats

32 BROWNING REDUCING SUGAR AMINO ACID CARBONYL AMINE Melanoidins (Brown Pigments) Dipengaruhi oleh : Jenis Gula Asam Amino pH Suhu Katalis Kadar Air 5-Hydroxymethyl- 2-Furfuraldehyde (HMF)

33 REAKSI MAILLARD Reaksi antara gula pereduksi dan Protein (asam amino) Dipengaruhi oleh suhu, waktu dan jenis gula Menghasilkan warna coklat Prosesnya berlangsung pada suasana basa Proses yang terjadi pada reaksi maillard: 1.Gugus karbonil pada gula menghasilkan N- glukosamin dan air 2.Gugus glukosamin yang tidak stabil mengalami pengaturan kembali membentuk ketosamin 3.Ketosamin mengalami proses lanjut: Memproduksi air dan redukton Menghasilkan diasetil, aspirin, pyruvaldehid, dan ikatan hidrolitik lain Membentuk melanoidin.

34 MAILLARD REACTION (i) Initial stage (colourless) a. sugar-amine condensation b. Amadori rearrangement (ii) Intermediate stage (colourless to yellow) c. sugar dehydration d. sugar fragmentation e. amino acid degradation (iii)Final stage (highly coloured) f. aldol condensation g. aldehyde-amine polymerisation, formation of heterocyclic nitrogen compounds.

35 Maillard Reaction Fig. 1. Effect Temperature on the reaction rate of D-Glucose with DL-Leucine

36 Maillard Reaction Fig. 1. Effect pH on the reaction rate of D-Glucose with DL-Leucine

37 BROWNING REACTIONS SUCROSE SUCROSE + FRUCTOSE SUCROSE + LACTOSE Maillard Reaction : (Lysine + Sugars)

38 BROWNING NON ENZIMATIS : MAILLARD Produk : Bakpia

39 CARAMELIZATION Caramelization is defined as the thermal degradation of sugars leading to the formation of volatiles (caramel aroma) and brown-colored products (caramel colors). The process is acid or base catalyzed and generally requires temperatures > 120 o C at 9 9) Caramelization occurs in food, when food surfaces are heated strongly, e.g. the baking and roasting processes, the processing of foods with high sugar content such as jams and certain fruit juices, or in wine production.

40 TEKNOLOGI KARBOHIDRAT SUMBER KARBOHIDRAT TEKNOLOGI PROSES CARBOHYDRATE-BASED PRODUCT 1.Ketela Pohon 2.Beras Ketan 3.Jagung 4.Gandum 1.Tape Ketela Pohon 2.Tape Ketan 3.HFCS 4.Karamel 5.Candy 6.Modified (CMC) 1.Asam 2.Basa 3.Panas 4.Enzimatis 5.Mikrobiologis

41 SIFAT FUNGSIONAL 1.SWEETNESS & SWEETENERS 2.HYGROSCOPICITY 1.Reduced Aw  Preservative 2.Adsorbent  Baby care products 3.Moisture  Beauty care products 3.TEKSTURAL CONTRIBUTION 1.Rigidity : Roti 2.Viscosity: Saus


Download ppt "KOMPOSISI DAN SIFAT BAHAN PANGAN Water Protein Carbohydrate Lipida Vitamin & Mineral Komponen Alami: Komponen Tambahan: Emulsifier Antioxidant Preservative."

Similar presentations


Ads by Google