Presentation is loading. Please wait.

Presentation is loading. Please wait.

KOMPOSISI DAN SIFAT BAHAN PANGAN

Similar presentations


Presentation on theme: "KOMPOSISI DAN SIFAT BAHAN PANGAN"— Presentation transcript:

1 KOMPOSISI DAN SIFAT BAHAN PANGAN
Komponen Alami: Komponen Tambahan: Vitamin & Mineral Emulsifier Antioxidant Lipida Preservative Asam Enzim Thickener Protein Pigmen Citarasa Sweetener Carbohydrate Etc. Antioksidan Water MUTU & KEAMANAN PANGAN

2 KARBOHIDRAT PENDAHULUAN KARBOHIDRAT DALAM BAHAN PANGAN
KLASIFIKASI DAN STRUKTUR KIMIA REAKSI KIMIA KARBOHIDRAT SIFAT FUNGSIONAL KARBOHIDRAT

3 1. PENDAHULUAN 75 % of Biological World
80 % of the Calorie Intake of humankind 75 – 80 % starch In USA : Composition of Calorie Intake Carbohydrate : 46% 47 % Starch 52% Sucrose Fats : 42% Protein : 12% Rumus Umum : Cx(H2O)y Modifikasi struktur  Sifat Fungsional

4 2. KARBOHIDRAT DALAM BAHAN PANGAN
Karbohidrat utama dalam : animal : glucose, glycogen milk : lactose plant : cellulose, starch seaweed : alginate, carrageenan, agar

5 2. KARBOHIDRAT DALAM BAHAN PANGAN
Food Sugar (%) Coke Crackers Ice Cream Orange Juice Cake (dry mix) 9 12 18 10 36

6 Sugar in Fruits : Fruit Free Sugar (%) Glucose Fructose Sucrose Apple
Grape Peach Pear Strawberry 1.17 6.86 0.91 0.95 2.09 6.04 7.84 1.18 6.77 2.40 3.78 2.25 6.92 1.61 1.03

7 Sugar in Vegetables: Vegetables Free Sugar (%) Gluc Fruc Suc Broccoli
Carrot Cucumber Spinach Sweetcorn Tomato 0.73 0.85 0.86 0.09 0.34 1.12 0.67 0.04 0.31 1.34 0.42 4.24 0.06 3.03 0.01

8 Sugar in Legumes : Legumes Free Sugar (%) Gluc Fruc Suc Snap bean
Lima Bean Pea 1.08 0.04 0.32 1.20 0.08 0.23 0.25 2.59 5.27

9 Sugar in Fruits (per 100 gram)
Macam Buah Jumlah Gula (%) Jenis Gula (g) Energi (kcal) Gluc Fruc Suc Kurma Pisang Kismis Apel Nanas Anggur Pear Jeruk Manis Mangga Blewah 48.8 19.6 14.2 11.0 10.6 9.3 8.7 8.5 7.4 6.5 24.9 5.2 - 1.2 2.3 4.8 2.5 1.1 23.9 5.9 6.0 1.4 4.3 5.0 1.8 1.3 3.8 6.9 0.2 4.2 4.1 271 98 *) 289 64 *) 57 *) 68 61 51 *) 73 *) 30 Sumber : Food and Nutrition Encyclopedia (1994) *) Daftar Analisis Bahan Makanan (1992)

10 3. KLASIFIKASI DAN STRUKTUR KIMIA
Tanaman Lingkungan Photosynthesis Lingkungan Carbohydrates are synthesised in green plants by photosynthesis. Solar energy is absorbed by the green pigment in plants, chlorophyll. This energy is used to drive many enzyme-catalysed processes. The overall effect is to reduce carbon dioxide to carbohydrates and oxidise water to oxygen:

11 CARBOHYDRATE Cx(H2O)y Mono saccharides Di saccharides Oligo
Hexose (C-6) D-Glucose D-Galactose D-Mannose D-Fructose Sucrose (a+d) Lactose (a+b) Maltose (a+a) -> a Cellobiose (a+a) ->b Rafinose (b+a+d) Stachyose (b+b+a+d) Verbacose Pentose (C-5) POLY SACCHARIDES Xylose Arabinose Ribose Cellulose (-> a) Starch (-> a) Chitin Agar (->b) Carrageenan (->b) Alginat

12 POLYSACCHARIDES STARCH NON-STARCH POLYSACCHARIDES Daratan: Perairan:
Alginate Cellulose Carrageenan Pectin Agar Gum Furcellaran Lainnya Chitosan Lainnya

13 Struktur Kimia = b a-D-Glukosa Gugus Aldehid (CHO) = gugus reduksi H
Gugus Karbonil (CO) 1 = b C O 6 CH2OH 2 H C OH O H 5 H OH 3 HO C H 4 OH H 1 1 4 HO 3 2 OH H H C OH H OH 5 H C OH Atom C Chiral a-D-Glukosa 6 H C OH Atom C asimetris terjauh dari karbonil (CO) Sebagai dasar penamaan D (OH dikanan) dan L (OH di kiri) H a-D-Glukosa (Aldosa) (Aldohexose)

14 Struktur Kimia

15 Struktur Kimia = a-D-Glucopyranosa Aldehydo-D-Glukose H C O H C OH H C
1 = 1 C O H C OH 6 CH2OH 2 2 H C OH H C OH O H 5 H 3 3 HO C H HO C H 4 OH H 1 4 4 HO 3 2 OH H C OH H C OH H OH 5 5 H C OH H C O a-D-Glukosa Konfigurasi Haworth 6 6 H C OH H C OH H H a-D-Glucopyranosa Aldehydo-D-Glukose

16 Struktur Kimia = Sorbitol a-D-Glukosa (Aldosa)
Gugus Aldehid (CHO) = gugus reduksi H Gugus Karbonil (CO) H 1 = 1 C O H C OH 2 2 H C OH H C OH Reduksi 3 3 HO C H HO C H 4 4 H C OH H C OH Na-Amalgam Li-Al-hydride hydrogenation 5 5 H C OH H C OH 6 6 H C OH H C OH H H a-D-Glukosa (Aldosa) Sorbitol

17 Struktur Kimia = = = Gugus Aldehid (CHO) = gugus reduksi H
Gugus Karbonil (CO) H 1 = 1 C O H C OH Gugus Keton 2 2 H C OH C = O 3 3 HO C H HO C H Saccharose group 4 4 H C OH H C OH 5 5 H C OH H C OH R 6 6 H C OH H C OH C = O H H HO C H a-D-Glukosa (Aldosa) (Hexose) (C6H12O6) a-D-Fruktosa (Ketosa) (Hexulose) (C6H12O6) R = H  Aldehyde R = CH2OH  Keton

18 Struktur Kimia Keton Aldehid Carbonyl group
Aldehydes are readily oxidised to carboxylic acids: Keton Aldehid If copper (II) (blue Cu2+) is used as the oxidising agent it is converted into copper (I) which forms red copper oxide (Cu2O) as a precipitate. This is how Benedict’s reagent and Fehling’s solution are used to test for aldehydes and reducing sugars.

19 Struktur Kimia

20 MONOSAKARIDA a a a a a-D-Glukosa a-D-Galaktosa a-D-Fructose a-D-Manosa
6 CH2OH CH2OH O O H HO 5 H H 4 OH H 1 OH H a HO a 3 2 OH H OH H OH H OH a-D-Glukosa a-D-Galaktosa 6 CH2OH OHCH2 1 O CH2OH O H H 5 2 OH OH H OH a OH HO a H 4 3 OH OH H H H a-D-Fructose a-D-Manosa

21 (Glukosa-a-(14)-Glukosa)
DISAKARIDA CH2OH CH2OH O H O H H H OH H OH O H HO OH H OH H OH a-D-Glukosa a-D-Glukosa a-D-Maltosa (Glukosa-a-(14)-Glukosa) terdiri atas 2 molekul glukosa dari hydrolysis pati oleh b-amylase gula reduksi

22 Galaktose-b-(14)-Glukosa)
DISAKARIDA CH2OH CH2OH O O HO H H OH H OH O H H OH H H OH H OH a-D-Galaktosa a-D-Glukosa Lactosa Galaktose-b-(14)-Glukosa) terdiri atas Galaktosa dan Glukosa terdapat pada susu : Mamalia : 2 – 8.5% Cow and Goat : 4.5 – 4.8% Human : 7 % gula reduksi

23 Glukosa-a-(12)-Fruktosa)
DISAKARIDA 6 CH2OH OHCH2 1 O O CH2OH H H 5 2 OH H H OH O OH HO 4 3 H OH OH H a-D-Glukosa a-D-Fructose Sukrosa Glukosa-a-(12)-Fruktosa) terdiri atas Glukosa dan Fruktosa terdapat pada cane atau beet gula non-reduksi table sugar

24 ikatan-b-(14)-Glikosidik)
POLISAKARIDA ikatan-b-(14)-Glikosidik) H OH CH2OH O B OH 2 H H O A O 1 4 H 1 4 OH 1 4 O H HO O H CH2OH H OH a-D-Glukosa a-D-Glukosa A B n CELLULOSE

25 POLISAKARIDA

26 POLISAKARIDA

27 REAKSI-REAKSI KARBOHIDRAT
HYDROLYSIS NON-ENZYMATIC BROWNING As shown in Table 4.29, the C1 and Cx factors, which were found to be endo- and exo-1,4-β-glucanases respectively, hydrolyze cellulose to cellobiose. Since the C1 factor is increasingly inhibited by its product, a cellobiase is needed so that cellulose breakdown is not rapidly brought to a standstill. However, cellobiase is also subject to product inhibition. Therefore, complete cellulose degradation is possible only if cellobiase is present in large excess or the glucose formed is quickly eliminated.

28 REAKSI-REAKSI KARBOHIDRAT
HYDROLYSIS : Pembuatan HFCS POLYSACCHARIDES 1 Acid Treatment 2 Heat Treatment 3 PRODUCTS Enzyme Treatment HFCS

29 4. REAKSI-REAKSI KARBOHIDRAT
HYDROLYSIS : Fermentasi Tape Fermentation BAHAN BAKU PRODUCTS Tape singkong Tape Ketan Ketela Pohoh Ketan Jenis Mikrobia Suhu Waktu Starch Glucose Alcohol Acid

30 ENZIMATIS BROWNING NON-ENZIMATIS Reaksi Maillard Karamelisasi
Reaksi Enzimatis Dipengaruhi oleh : Substrat Enzim Suhu Waktu ENZIMATIS BROWNING Reaksi Maillard Reaksi Gula & Protein Dipengaruhi oleh : Jenis Gula Suhu Waktu NON-ENZIMATIS Karamelisasi Ascorbic acid oxidation Pemanasan Gula Dipengaruhi oleh : Suhu Waktu

31 BROWNING Reaksi Maillard Ilmuwan Perancis : Louis Maillard (1912)
 glucose + glycine Carbonyl – Amine Reaction  action of amino acids/protein on reducing sugars Related to aroma, taste and color Roasting of coffee and cacao beans, baking of bread and cakes, toasting of cereals, cooking of meats

32 BROWNING REDUCING SUGAR AMINO ACID CARBONYL Melanoidins (Brown
Pigments) Dipengaruhi oleh : Jenis Gula Asam Amino pH Suhu Katalis Kadar Air 5-Hydroxymethyl- 2-Furfuraldehyde (HMF) AMINO ACID AMINE

33 REAKSI MAILLARD Reaksi antara gula pereduksi dan Protein (asam amino)
4/11/2017 REAKSI MAILLARD Reaksi antara gula pereduksi dan Protein (asam amino) Dipengaruhi oleh suhu, waktu dan jenis gula Menghasilkan warna coklat Prosesnya berlangsung pada suasana basa Proses yang terjadi pada reaksi maillard: Gugus karbonil pada gula menghasilkan N-glukosamin dan air Gugus glukosamin yang tidak stabil mengalami pengaturan kembali membentuk ketosamin Ketosamin mengalami proses lanjut: Memproduksi air dan redukton Menghasilkan diasetil, aspirin, pyruvaldehid, dan ikatan hidrolitik lain Membentuk melanoidin. yunia

34 MAILLARD REACTION (i) Initial stage (colourless)
a. sugar-amine condensation b. Amadori rearrangement (ii) Intermediate stage (colourless to yellow) c. sugar dehydration d. sugar fragmentation e. amino acid degradation (iii)Final stage (highly coloured) f. aldol condensation g. aldehyde-amine polymerisation, formation of heterocyclic nitrogen compounds.

35 Maillard Reaction Fig. 1. Effect Temperature on the reaction rate of
D-Glucose with DL-Leucine

36 Maillard Reaction Fig. 1. Effect pH on the reaction rate of
D-Glucose with DL-Leucine

37 BROWNING REACTIONS Maillard Reaction : (Lysine + Sugars) SUCROSE
FRUCTOSE SUCROSE + LACTOSE

38 BROWNING NON ENZIMATIS : MAILLARD
4/11/2017 BROWNING NON ENZIMATIS : MAILLARD Produk : Bakpia yunia

39 CARAMELIZATION Caramelization is defined as the thermal degradation of sugars leading to the formation of volatiles (caramel aroma) and brown-colored products (caramel colors). The process is acid or base catalyzed and generally requires temperatures > 120 oC at 9<pH<3  (pH < 3 or pH > 9) Caramelization occurs in food, when food surfaces are heated strongly, e.g. the baking and roasting processes, the processing of foods with high sugar content such as jams and certain fruit juices, or in wine production.

40 TEKNOLOGI KARBOHIDRAT
PROSES SUMBER KARBOHIDRAT CARBOHYDRATE-BASED PRODUCT Ketela Pohon Beras Ketan Jagung Gandum Asam Basa Panas Enzimatis Mikrobiologis Tape Ketela Pohon Tape Ketan HFCS Karamel Candy Modified (CMC)

41 SIFAT FUNGSIONAL SWEETNESS & SWEETENERS HYGROSCOPICITY
Reduced Aw  Preservative Adsorbent  Baby care products Moisture  Beauty care products TEKSTURAL CONTRIBUTION Rigidity : Roti Viscosity : Saus


Download ppt "KOMPOSISI DAN SIFAT BAHAN PANGAN"

Similar presentations


Ads by Google