Presentation is loading. Please wait.

Presentation is loading. Please wait.

Iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 High moisture extrusion : optimisation of texturisation through control of.

Similar presentations


Presentation on theme: "Iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 High moisture extrusion : optimisation of texturisation through control of."— Presentation transcript:

1 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 High moisture extrusion : optimisation of texturisation through control of rheological and textural parameters D. Bounie, E. Van Hecke USTL (Université des Sciences et Technologies de Lille) IAAL (Institut Agricole et Alimentaire) Bâtiment C6 59655 Villeneuve d’Ascq Cedex - France Tel : +33 (0)3 20.43.49.21, Fax : +33 (0)3 20.43.44.86 E-Mail : Bounie@univ-lille1.fr, vanhecke@univ-lille1.fr Smart Extrusion Workshop, Sydney, 2 december 1997 (p1)

2 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 PLAN (p2) High moisture extrusion  Usual extrusion conditions (50 - 80 % water, 15 - 30 % proteins, fats 130 °C) and consequences (reduction of : shear, viscous dissipation of energy and expansion at die outlet, especially with long cooling dies) 3 Raw materials 3 Main applications 3 Typical extrusion line specific feeding device special screw profiles (+ break plates) long cooling-dies temperature control Fundamentals of high moisture texturization during extrusion-cooking 3 Main steps protein melting (plasticising) : within the extruder material texturization (fibration) : along the die 3Flow in extruder and die during texturization 3Control of texturization through control of rheological behaviour (shear) viscosity elasticity visoelasticity elongational viscosity 3Correlation between on-line and off-line assessment of rheological and textural parameters Perspectives

3 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 High moisture extrusion  Usual extrusion conditions (50 - 80 % water, 15 - 30 % proteins, fats 130 °C) and consequences (reduction of : shear, viscous dissipation of energy and expansion at die outlet, especially with long cooling dies) 3 Raw materials 3 Main applications 3 Typical extrusion line specific feeding device special screw profiles (+ break plates) long cooling-dies temperature control Fundamentals of high moisture texturization during extrusion-cooking 3 Main steps protein melting (plasticising) : within the extruder material texturization (fibration) : along the die 3Flow in extruder and die during texturization 3Control of texturization through control of rheological behaviour (shear) viscosity elasticity visoelasticity elongational viscosity 3Correlation between on-line and off-line assessment of rheological and textural parameters Perspectives PLAN

4 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 Wet extrusion vs. dry extrusion (Roussel, 1996 ) HIGH MOISTURE EXTRUSION : APPLICATIONS (p3a) 0 % 20 % 40 % 60 % 80 % Moisture content % Confectionery Dry petfoods TVP Petfood-moist Pasta Snacks - Flat breads Breakfast cereals Cheese analogs Enzyme reactors Fruits and vegetables Wet extrusion : usual raw materials ( Roussel, 1996 ) Animal raw materials 3 red and white meat minces 3 meat trimmings 3 fish meats (surimi) 3 filleting co-products 3 minced from shell fish or cephalopoda 3 egg or milk proteins Vegetable raw materials 3 protein-rich meals 3 protein concentrates or isolates (soya, wheat, peas, brans,...) after adequate rehydratation APPLICATIONS ( Cheftel and al., 1992 ) Sterilization 3 preparation of sterile vegetables purées, meat-vegetables mixes Chemical reaction (enzymic or acid hydrolysis) 3 starch or proteins modification for preparation of glucose syrups, fermentation substrates, flavor preparations Texturization Gelation/fibration 3 gelation and fiber formation using vegetable proteins (soya, gluten) 3 restructuration of mince, surimi, mechnically deboned meats (with binders) 3 texturization and fiber formation with fish muscle proteins Emulsification/gelation : « microcoagulation » of dairy proteins 3 processed cheeses 3 cheese analogs 3 fat substitutes 3 casein coagulation

5 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p3b) MACRO AND MICRO STRUCTURES OF FIBROUS EXTRUDED PRODUCTS A commercial extruded crab analog from Nippon Suisan ( Cheftel and al, 1992 ) Scanning electron micrographs of an extruded surimi/soya concentrate mix (Thiebaud,1995)

6 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 TYPICAL EXTRUSION LINE FOR PRODUCT FIBRATION (p3c) Feeding device Twin screw extruder with accurate temperature control Gear pump Extra long cooling die (Nippon Suisan patent)

7 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 High moisture extrusion  Usual extrusion conditions (50 - 80 % water, 15 - 30 % proteins, fats 130 °C) and consequences (reduction of : shear, viscous dissipation of energy and expansion at die outlet, especially with long cooling dies) 3 Raw materials 3 Main applications 3 Typical extrusion line specific feeding device special screw profiles (+ break plates) long cooling-dies temperature control Fundamentals of high moisture texturization during extrusion-cooking 3 Main steps protein melting (plasticising) : within the extruder material texturization (fibration) : along the die 3Flow in extruder and die during texturization 3Control of texturization through control of rheological behaviour (shear) viscosity elasticity visoelasticity elongational viscosity 3Correlation between on-line and off-line assessment of rheological and textural parameters Perspectives PLAN

8 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 TEXTURIZATION : MELTING + FIBRATION (p4) Flow in extruder and cooled die Metering zoneTransition zone Die Structure formation as a result of phase separation in biopolymer mixtures followed by subsequent orientation in flow through die (Tolstoguzov, 1986 ; Mitchell et al., 1994) Biopolymer phases separate into different domains in extruder Domains orientate as a result of flow through die Products sets to fibrous structure on cooling

9 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 High moisture extrusion  Usual extrusion conditions (50 - 80 % water, 15 - 30 % proteins, fats 130 °C) and consequences (reduction of : shear, viscous dissipation of energy and expansion at die outlet, especially with long cooling dies) 3 Raw materials 3 Main applications 3 Typical extrusion line specific feeding device special screw profiles (+ break plates) long cooling-dies temperature control Fundamentals of high moisture texturization during extrusion-cooking 3 Main steps protein melting (plasticising) : within the extruder material texturization (fibration) : along the die 3Flow in extruder and die during texturization 3Control of texturization through control of rheological behaviour (shear) viscosity elasticity visoelasticity elongational viscosity 3Correlation between on-line and off-line assessment of rheological and textural parameters Perspectives PLAN

10 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 COOLING DIES FOR TEXTURATION Rectangular die (p5) Circular die Annular die

11 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 FLOW PATTERN IN EXTRUDER AND DIE (Bhattacharya and Padmanabhan, 1992) (p6) Metering zoneEntrance region Viscometric flow region Exit region Intermediary region (relaxation) P die axis Shear flow  P entry Extensional flowShear flow  P exit  P shear flow  P total =  P entry +  p shear flow +  P exit

12 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 FLOW PROFILES THROUGH DIES Effect of cooling (p7) Flow through insulated die Flow through supercooled die LiquidLiquid / solidSolid

13 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 EFFECT OF OPERATING CONDITIONS ON FLOW, TROUBLESHOOTING (p8) Effect of implementing a non-newtonian fluid m = 1 m < 1 m << 1 Effect of viscosity Increase of viscosity Decrease of viscosity :. increase of water content. increase of temperature Troubleshooting «Shark-skin» : periodic rupture of fluid bed (no slip at die wall) «Two-phases wavy flow» : insufficient cooling rate (die too short or too thick) ; inner layers of flow are still melted at die outlet

14 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 High moisture extrusion  Usual extrusion conditions (50 - 80 % water, 15 - 30 % proteins, fats 130 °C) and consequences (reduction of : shear, viscous dissipation of energy and expansion at die outlet, especially with long cooling dies) 3 Raw materials 3 Main applications 3 Typical extrusion line specific feeding device special screw profiles (+ break plates) long cooling-dies temperature control Fundamentals of high moisture texturization during extrusion-cooking 3 Main steps protein melting (plasticising) : within the extruder material texturization (fibration) : along the die 3Flow in extruder and die during texturization 3Control of texturization through control of rheological behaviour (shear) viscosity elasticity visoelasticity elongational viscosity 3Correlation between on-line and off-line assessment of rheological and textural parameters Perspectives PLAN

15 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 STRESS TENSOR (p9)  2,1  1,3  3,2  3,1  1,2  2,3 2 3 1 Shear stress (if no rotation, i.e. no torque)  3,1 =  1,3  3,2 =  2,3  2,1 =  1,2 N 1 =  1,1 -  2,2 (first normal stress difference) =  e  = k (  : elongational strain rate) N 2 =  2,2 -  3,3 (second normal stress difference) N 2 < 0, N 2 << N 1  2. Normal stress  1,1  2,2  3,3  2,2  3,3  1,1

16 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 SHEAR VISCOSITY TT (p10) F S dl x dx v v = dl dt shear velocity (m.s -1 )  T = F S shear stress (N.m -2 = Pa)  = dv dx shear rate (s -1 ). TT  s = shear viscosity (Pa.s) . . TT ss Bingham plastic Newtonian Pseudoplastic (shear thinning) Dilatent (shear thickening)  T,o Yield stress

17 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 VISCOSITY : LAWS OF BEHAVIOUR (p11)  constant Newtonian Power law (Ostwald’s law) (K : index of consistency, m :flow behaviour index  m-1. Non Newtonian    m-1 ) e -  T. Effect of temperature T (Harper and al., 1971)    m-1 ) e -  MC. Effect of moisture content MC (Harper and al., 1971)    m-1 )e dt - k e -  E RT a (t). Effect of chemical reaction (  E, R) (Remsen and Clark, 1978)    m-1 ) e -  W. Effect of thermo- mechanical history W (SME) (Della Valle and Vergnes, 1994)  = K o e ( - a MC - b W)  m’-1 with : m’ = c 1 T + c 2 MC + c 3 MC.T.  E RT a Example : corn starch at low MC (Della Valle and Vergnes, 1994)

18 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 IN-LINE MEASUREMENT OF VISCOSITY (p12) QvQv P L LL PP (Mac Master and al., 1987) Shear stress at wall  w Apparent shear rate at wall  w, a. Real shear rate at wall  w, r. Viscosity  R R  P 2  L 4 Q v  R 3 4 Q v  R 3 3m + 1 4m  w  w, r. h  P 1 2  L 1 + hWhW 6 Q v W h 2 6 Q v W h 2 2m + 1 3m h W  w  w, r. Log K Log  w Log  w, a. for different Q v m

19 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 IN-LINE RHEOMETERS WITH CONTROLLED FEEDRATE (p13) By pass or side stream rheometers (Goettfoert system for plastics) Gear pump Rheometer Derivation « Rheopac » slit die rheometer (Vergnes et al., 1990 and 1993) Piston keys

20 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 DISPLAY OF ELASTICITY : Weissenberg effect, Barus effect (p14) Weissenberg effect increase with increasing . NN TT  die  extrudate Barus effect : swelling at die outlet TT  N ) NN

21 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 IN-LINE MEASUREMENT OF ELASTICITY : EXIT PRESSURE METHOD (Padmanabhan and Bhattacharya, 1991) (p15) P L  P entrance related to extensional viscosity  P exit proportional to elasticity

22 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 QvQv IN-LINE MEASUREMENT OF ELASTICITY HOLE PRESSURE METHOD ( Baird, 1976 ; Padmanabhan and Bhattacharya, 1992 ; Bhattacharya M. and Padmanabhan M., 1992, Malkus and al., 1992 ; Bouvier and Gelus, 1994) NN (p16) P1P1 P2P2 P3P3 flush-mounted transducers P P1P1 P2P2 P3P3  P 1,3 (shear viscosity) L P4P4 transducer at the bottom of the hole P4P4  p hole (elasticity) N 1 =  1,1 -  2,2 =  e 

23 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 DYNAMIC DETERMINATION OF VISCOELASTICITY (1) (Ross-Murphy, 1988) (p17) Force transducerAccelerometer Imposed oscillatory strain  = f(t) Measured stress  = f(t) Viscous fluid Strain   (t)   cos  t  t Stress   (t)   cos  t    2 Elastic fluid Stress  Strain  t  Viscoelastic fluid Stress  t   2 Strain 

24 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 DYNAMIC DETERMINATION OF VISCOELASTICITY (2) (p18) log scale Viscosity Ideal viscous liquid Newton’s law Loss modulus   . G’’ = sin  00 00 Temperature G’’ Elasticity Ideal elastic solid Hooke’s law Storage modulus    G’ = cos  00 00 G’ Viscoelasticity Viscoelastic fluid G’’ G’ = tg  Transition or tg 

25 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 ELONGATIONAL VISCOSITY ss ee Newtonian fluid Non-newtonian fluid (Trouton modulus) Type of extensional flow (p19) Uniaxial extension ex : spinning of fibers 3>> 3 Planar extension ex : foil stretching, central disk injection 4>> 4 Biaxial extension ex : blowing extrusion, plug extrusion 6>> 6

26 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 ELONGATIONAL vs. SHEAR VISCOSITY (p20) Newtonian fluid ss  . Non-newtonian fluid ss  . ee ee ss ee  constante [= f( . ss ee = constante + In-line determination of extensional viscosity : Entrance pressure drop method (White and al., 1987 ; Bhattacharya and al., 1994)

27 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 PLAN High moisture extrusion  Usual extrusion conditions (50 - 80 % water, 15 - 30 % proteins, fats 130 °C) and consequences (reduction of : shear, viscous dissipation of energy and expansion at die outlet, especially with long cooling dies) 3 Raw materials 3 Main applications 3 Typical extrusion line specific feeding device special screw profiles (+ break plates) long cooling-dies temperature control Fundamentals of high moisture texturization during extrusion-cooking 3 Main steps protein melting (plasticising) : within the extruder material texturization (fibration) : along the die 3Flow in extruder and die during texturization 3Control of texturization through control of rheological behaviour (shear) viscosity elasticity visoelasticity elongational viscosity 3Correlation between on-line and off-line assessment of rheological and textural parameters Perspectives

28 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 PERSPECTIVES : NEW DIES ? (p21) Breaker plates

29 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 Baird D.G., 1976. Fluid elasticity measurements from hole pressure error data. J. Appl. Polym. Sci, 20, pp 3155- 3173. Bhattacharya M. and Padmanabhan M., 1992. Extrusion processing : texture and rheology. In : Encyclopedia of Food and Science Technology, Hui Y.H. Ed., Willey Interscience, New York, pp 800-814. Bhattacharya M., Padmanabhan M. and Seethamraju K., 1994. Uniaxial extensional viscosity during extrusion cooking from entrance pressure drop method. J. Food Sci., 59(1), pp 221-226, 230 Bouvier J.M. and Gelus M., 1994. Apport des mesures en ligne à l’analyse du procédé de cuisson-extrusion. In : La Cuisson-Extrusion, Colonna P. and Della Valle G. Eds., Tec & Doc Lavoisier, Paris, pp 323-355. Cheftel J.C., Kitagawa M. and Quéguiner C., 1992. New protein texturization processes by extrusion cooking at high moisture levels. Food Rev. Int., 8(2), pp 235-275. Cheftel J.C., Kitagawa M. and Quéguiner C., 1994. Nouveaux procédés de texturation protéique par cuisson- extrusion à teneur élevée en eau. In : La Cuisson-Extrusion, Colonna P. and Della Valle G. Eds., Tec & Doc Lavoisier, Paris, pp 45-84. Cheftel J.C. and Dumay E., 1993. Microcoagulation of proteins for development of "creaminess". Food Rev. Int., 9(4), pp 473-502. Della Valle G. and Vergnes B., 1994. Propriétés thermophysiques et rhéologiques des substrats utilisés en cuisson-extrusion. In : La Cuisson-Extrusion, Colonna P. and Della Valle G. Eds., Tec & Doc Lavoisier, Paris, pp 439-467. Harper J.M., Rhodes T.P. and Wanninger L.A., 1971. Viscosity model for cooked cereal doughs. A.I.Ch.E. Symposium Series, 676(108), pp 40-43. Malkus D.S., Pritchard W.G. and Yao M., 1992. The hole-pressure effect and viscosimetry. Rheol. Acta, 31, pp 521-534. Mc Master T.J., Senouci A. and Smith A.C., 1987. Measurements of rheological and ultrasonic properties of food and synthetic polymer melts. Rheol. Acta, 26, pp 308-315. Mitchell J.R., Areas J.A.G. and Rasul S., 1994. Modifications chimiques et texturation des protéines à faible teneur en eau.. In : La Cuisson-Extrusion, Colonna P. and Della Valle G. Eds., Tec & Doc Lavoisier, Paris, pp 85- 104. Padmanabhan M. and Bhattacharya M., 1991. Flow behavior and exit pressures of corn meal under high- shear-high-temperature extrusion conditions using a slit die. J. Rheol., 35(3), pp 315-343. Padmanabhan M. and Bhattacharya M., 1992. Rheological measurement of fluid elasticity during extrusion- cooking. Trends in Food Science and Technology, 6, 149-151. Quéguiner C., Dumay E., Cavalier-Salou and Cheftel J.C., 1991. Application of extrusion cooking to dairy products : preparation of fat analogues by microcoagulation of whey proteins. In : Applied Food Extrusion Science, Kokini J. and al. Eds., Dekker, New York, pp 363-376. Quéguiner C., Dumay E., Cavalier-Salou and Cheftel J.C., 1992. Microcoagulation of a whey protein isolate by extrusion cooking at acid pH. J. Food Sci., 57, pp 610-616. Remsen C.H. and Clark J.P., 1978. A viscosity model for a cooking dough. J. Food Process Eng., 2, pp 39-64. Ross-Murphy S.B., 1988. Small deformation measurements. In : Food Structure : its Creation and Evaluation, Blanshard J.M. and Mitchell Eds., Butterworth, London, pp 387-400. Roussel L., 1996. Making meat products using extrusion technology. Extrusion Communiqué, nov-dec, pp 16- 18. Thiebaud M., 1995. Texturation par cuisson-extrusion de mélanges protéiques hydratés à base de surimi de poisson. Influence des paramètres opératoires et de la formulation sur les caractéristiques biochimiques et physicochimiques des extrudats. PhD. Thesis, University of Montpellier. Tolstoguzov V.B., 1986. Functional properties of protein-polysaccharides mixtures. In : Functional Properties of Food Macromolecules, Mitchell J.R. and Ledward D.A. Eds., Elesevier Applied Science Pub., London, pp 385- 415. Vergnes B., Della Valle G. and Tayeb J., 1990. Rheopac : a new on-line rheometer with controlled feed rate to determine the viscosity of starchy products. In : Proceedings of ACoFoP2, 13-14 nov. 1990, Bimbenet J.J. and Trystram G. Eds., Paris. Vergnes B., Della Valle G. and Tayeb J., 1993. Rheopac : a specificin-line rheometer for extruded starchy products. Design, validation and application to maize starch. Rheol. Acta, 32, pp 465-476. White S.A, Gotsis A.D. and Baird D.G., 1987. Review of the entry flow problem : experimental and numerical. J. Non-Newtonian Fluid Mech., 24, pp 121-160. BIBLIOGRAPHY (p22)


Download ppt "Iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 High moisture extrusion : optimisation of texturisation through control of."

Similar presentations


Ads by Google