Download presentation

Presentation is loading. Please wait.

Published bySergio Rathburn Modified about 1 year ago

1
Chapter1: Diodes 1 1

2
Figure 2.1 The ideal diode: (a) diode circuit symbol; (b) i–v characteristic; (c) equivalent circuit in the reverse direction; (d) equivalent circuit in the forward direction. 2

3
Electrostatics of PN Junction NAND Max Electric Field Depletion width 3

4
Reverse bias connection Depletion region expands with reverse bias 4 Diode Connections

5
Forward connection For silicon diodes, the typical forward voltage is 0.7 volts, For germanium diodes, the forward voltage is only 0.3 volts. 5

6
Typical I-V Characteristics VT=k*T/q Thermal Voltage

7
Figure 2.7 The i–v characteristic of a silicon junction diode. 7

8
The forward-Bias Region: It is entered when the terminal voltage v is positive. In the forward region the i-v relationship is closely approximated by: i=i s (e v/nVT -1)(¤) Where V T =KT/q k=Boltzmann’s constant= 1.38* joules/kelvin T=the absolute temperature in kelvins=273+temperature in °C q=The magnitude of electronic charge= 1.6* coulomb n has a value between 1 and 2 For appreciable current I in the forward direction, specially for i>>I s, (¤) can be approximated by the relationship i=i s e v/nV T v=n V T ln(i/i S ) Example: A silicon diode said to be a 1mA device displays a forward voltage of 0.7v at a current of 1mA. Evaluate the junction scaling constant I S in the event that n is either 1 or 2. Solution: Since i=I s e v/nVT Then I s =i e -v/nVT n=1: I s = e -700/25 =6.9* A N=2: I s = e -700/50 =8.3* A 8

9
Figure 2.10 A simple circuit used to illustrate the analysis of circuits in which the diode is forward conducting. Example: Determine the current I D and the diode voltage V D of the circuit with V DD =5V and R=1kΩ. Assume that the diode has a current of 1mA at a voltage of 0.7V and that its voltage drop changes by 0.1V for every decade change in current. Solution: we assume that V D =0.7V Then, by employing the equation and considering That 2.3nV T =0.1V, we obtain: V 1 =0.7V, I 1 =1mA and I 2 =4.3mA results in V 2 =0.763V. Thus results permit to us to get: and 9

10
Figure 2.12 Approximating the diode forward characteristic with two straight lines: the piecewise-linear model. 10 Resistance Levels

11
Figure 2.13 Piecewise-linear model of the diode forward characteristic and its equivalent circuit representation. The straight-lines (or piecewise linear) model of the fig (a) can be described by: i D =0, v D

12
12 Application: 1- In case of DC current, Determine the dc resistance levels for the diode at (a) ID=2 mA (b) ID= 20 mA (c) VD=-10 V

13
Figure 2.17 Development of the diode small-signal model. Note that the numerical values shown are for a diode with n = 2. 13

14
Application 2: In case of AC current : (a) Determine the ac resistance at ID= 2 mA. (b) Determine the ac resistance at ID =25 mA. 14

15
Figure 2.11 Graphical analysis of the circuit in Fig using the exponential diode model. From the circuit above, If we consider the 2 equations, we obtain the Q point in the intersection with the curve of the diode response I=f(V) 15 Load Line Analysis

16
Figure 2.2 The two modes of operation of ideal diodes and the use of an external circuit to limit the forward current (a) and the reverse voltage (b). 16 Series of Diode configurations

17
Figure 2.5 Diode logic gates: (a) OR gate; (b) NAND gate (in a positive-logic system). 17

18
Example: Find the values of I and V in the circuits shown in Fig E2.4 18

19
Application: 1- Determine Vo, I 1, I D1, and I D2 for the parallel diode configuration of the figure shown below 2- Determine I 1, I 2, and I D2 for the parallel diode configuration of the figure shown below 19

20
Figure 2.6 Circuits for Example 3.2. Homework: Assuming the diodes to be ideal, find the values of I and V in the circuit 20

21
Figure 2.20 Circuit symbol for a zener diode and its Model. Zener Diode Figure 2.21 The diode i–v characteristic with the breakdown region shown in some detail. 21

22
Application: 1- (a) For the Zener diode network, determine VL, VR, IZ, and PZ. (b) Repeat part (a) with RL = 3 k. Homework: Ex 42 P130 22

23
Figure 2.23 (a) Circuit for Example 2.8. (b) The circuit with the zener diode replaced with its equivalent circuit model. The -6.8v zener diode in the circuit is specified to have V z =6.8v at I z =5.mA. rs=20, and I zk =20mA. The supply voltage V + is nominally 10v but can vary by ±1v a)Find V0 with no load and with V + at its nominal value b)Find the change in V 0 resulting from the ±1 vchange in V +. Note that (ΔV 0 /ΔV + ), usually expressed in mV/V, is known line regulation c)Find the change in V 0 resulting from connecting a load resistance R L that draws a current I L =1mA, and hence find the load regulation (ΔV 0 /ΔI L ), in mV/mA. d)Find the change inV 0 when RL=2kΩ e)Find the value of V 0 when RL=0.5kΩ f)What is the minimum value of RL for which the diode still operates in the breakdown region 23

24
Figure 2.3 (a) Rectifier circuit. (b) Input waveform. (c) Equivalent circuit when vI 0. (d) Equivalent circuit when vI 0. (e) Output waveform. 24 Diodes in AC analysis with Ac source

25
Figure E2.1 Figure E2.2 25

26
Figure 2.4 Circuit and waveforms for Example 3.1. Example: ( a) shows a circuit for charging a -12v battery. If Vs is a sinusoid with 24v peak amplitude. Find the fraction of each cycle during which the diode conducts. Also, find the peak value of the diode current and the maximum reverse-bias voltage that appears across the diode Solution: The diode conducts when Vs exceeds 12v. As shown in Fig2.4 (b). The conduction angle is 2θ, where θ is given by: 24 cosθ= 12 Thus θ=60° and the conduction angle is 120°, or one-third of a cycle. The peak value of the diode current is given by The maximum reverse voltage across the diode occurs when Vs is at its negative peak and is equal to 24+12=36V 26

27
Figure 2.24 Block diagram of a dc power supply. APPLICATIONS OF DIODES: Diodes are used in so many ways that we will not be able to discuss all of them. The major applications of the diodes that will be discussed are: Rectifiers Clippers or Limiters Clampers Voltage Multipliers 27

28
Half-wave rectifier Conduction region (0 T/2). 28

29
No conduction region (T/2 T). Half-wave rectified signal 29

30
Effect of VK on half-wave rectified signal. If we consider a network for the example 30

31
The resulting vo for the circuit If we consider the effect of VK on output of Figure 31

32
Full-wave bridge rectifier Network of this Figure for the period 0 T/2 of the input voltage vi. 32

33
Conduction path for the positive region of vi. + 33

34
That’s why if we consider the Input and output waveforms for a full-wave rectifier, we will obtain the following result Determining VOmax for silicon diodes in the bridge configuration. 34

35
Full-Wave Rectifier using a center-tapped secondary Network conditions for the positive region of vi. 35

36
Network conditions for the negative region of vi. Series clipper with a dc supply: if we consider the following figure 36

37
Figure 2.25 (a) Half-wave rectifier. (b) Equivalent circuit of the half-wave rectifier with the diode replaced with its battery-plus-resistance model. (c) Transfer characteristic of the rectifier circuit. (d) Input and output waveforms, assuming that rD ! R. 37

38
Figure 2.26 Full-wave rectifier utilizing a transformer with a center-tapped secondary winding: (a) circuit; (b) transfer characteristic assuming a constant-voltage-drop model for the diodes; (c) input and output waveforms. 38

39
Figure 2.27 The bridge rectifier: (a) circuit; (b) input and output waveforms. 39

40
Figure 2.28 (a) A simple circuit used to illustrate the effect of a filter capacitor. (b) Input and output waveforms assuming an ideal diode. Note that the circuit provides a dc voltage equal to the peak of the input sine wave. The circuit is therefore known as a peak rectifier or a peak detector. 40

41
Figure 2.29 Voltage and current waveforms in the peak rectifier circuit with T. The diode is assumed ideal. 41

42
Figure 2.30 Waveforms in the full-wave peak rectifier. 42

43
Figure 2.38 Voltage doubler: (a) circuit; (b) waveform of the voltage across D1. Applications: Voltage doubler 43

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google