Presentation is loading. Please wait.

Presentation is loading. Please wait.

Number Systems Decimal Binary Denary Octal Hexadecimal Click the mouse or Press the space bar to Continue.

Similar presentations


Presentation on theme: "Number Systems Decimal Binary Denary Octal Hexadecimal Click the mouse or Press the space bar to Continue."— Presentation transcript:

1 Number Systems Decimal Binary Denary Octal Hexadecimal Click the mouse or Press the space bar to Continue

2 Exponents 2 0 = = = 2 x 2 =4 2 3 = 2 x 2 x 2 = 8 x 5 + x 10 = x 15 1 / x 2 = x -2 Click to Continue

3 Decimal Numbering systems Base: 10 Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Representation 5234 ThousandsHundredsTensUnits Click to Continue

4 Decimal Numbering systems Example: = = = = ,234 = 5 x x x x 1 Click to Continue

5 Binary Numbering systems Base: 2 Digits: 0, 1 binary number: positional powers of 2: decimal positional value: binary number: Click to Continue

6 Binary to Decimal Conversion To convert to base 10, add all the values where a one digit occurs. Ex: positional powers of 2: decimal positional value: binary number: = Click to Continue

7 Binary to Decimal Conversion Ex: positional powers of 2: decimal positional value: binary number: Click to Continue

8 Decimal to Binary Conversion The Division Method. Divide by 2 until you reach zero, and then collect the remainders in reverse. Ex 1: = ) 56 Rem: 2 ) ) ) ) ) Click to Continue

9 Decimal to Binary Conversion Ex 2:35 10 = 2 ) Rem: 2 ) Answer: = 2 Click to Continue

10 Decimal to Binary Conversion The Subtraction Method: Subtract out largest power of 2 possible (without going below zero) each time until you reach 0. Place a one in each position where you were able to subtract the value, and a 0 in each position that you could not subtract out the value without going below zero. Click to Continue

11 Decimal to Binary Conversion Ex 1: | | | Answer: = Click to Continue

12 Decimal to Binary Conversion Ex 2: | | | Answer: = 2 Click to Continue

13 Character Representation ASCII Table RightmostLeftmost Three Bits Four Bits SOHDC1!1AQaq 0010STXDC2"2BRbr 0011ETXDC3#3CScs 0100EOTDC4$4DTdt 0101ENQNAK%5EUeu 0110ACKSYN&6FVfv 0111BELETB'7GWgw 1000BSCAN(8HXhx 1001HTEM)9IYIy 1010LFSUB*:JZjz 1011VTESC+;K[k{ 1100FFFS,N^n~ 1111SIUS/?O_oDEL Click to Continue

14 Character Representation Ex: Find the binary ASCII and decimal ASCII values for the ‘&’ character. RightmostLeftmost Three Bits Four Bits SOHDC1!1AQaq 0010STXDC2"2BRbr 0011ETXDC3#3CScs 0100EOTDC4$4DTdt 0101ENQNAK%5EUeu & 0110ACKSYN & 6FVfv 0111BELETB'7GWgw 1000BSCAN(8HXhx 1001HTEM)9IYIy 1010LFSUB*:JZjz 1011VTESC+;K[k{ 1100FFFS,N^n~ 1111SIUS/?O_oDEL Click to Continue

15 Character Representation ASCII Table From the chart: ‘&’ = (binary ASCII value) Convert the binary value to decimal: = = Therefore: ‘&’ = 38(decimal ASCII value) Click to Continue

16 Octal Numbering systems Base: 8 Digits: 0, 1, 2, 3, 4, 5, 6, 7 Octal number: powers of : decimal value: Octal number: Click to Continue

17 Octal to Decimal Conversion To convert to base 10, beginning with the rightmost digit multiply each nth digit by 8 (n-1), and add all of the results together. Ex: positional powers of 8: decimal positional value: Octal number: = Click to Continue

18 Octal to Decimal Conversion Ex: positional powers of 8: decimal positional value: Octal number: Click to Continue

19 Decimal to Octal Conversion The Division Method. Divide by 8 until you reach zero, and then collect the remainders in reverse. Ex 1: = ) 4330 Rem: 8 ) ) ) ) Click to Continue

20 Decimal to Octal Conversion Ex 2: = 8 ) 810 Rem: 8 ) Answer: = 8 Click to Continue

21 Decimal to Octal Conversion The Subtraction Method: Subtract out multiples of the largest power of 8 possible (without going below zero) each time until you reach 0. Place the multiple value in each position where you were able to subtract the value, and a 0 in each position that you could not subtract out the value without going below zero. Click to Continue

22 Decimal to Octal Conversion Ex 1: | | | Answer: =

23 Decimal to Octal Conversion Ex 2: | | | Answer: = 8

24 Hexadecimal Numbering systems Base: 16 Digits: 0, 1, 2, 3, 4, 5, 6, 7,8,9,A,B,C,D,E,F Hexadecimal number:1F4 16 powers of : decimal value: Hexadecimal number: 1 F 4

25 Hexadecimal Numbering systems Four-bit GroupDecimal DigitHexadecimal Digit A B C D E F

26 Hexa to Decimal Conversion To convert to base 10, beginning with the rightmost digit multiply each nth digit by 16 (n-1), and add all of the results together. Ex: 1F4 16 positional powers of 16: decimal positional value: Hexadecimal number: 1 F =

27 Hexa to Decimal Conversion Ex: 7E 16 positional powers of 16: decimal positional value: Hexa number:

28 Decimal to Hexa Conversion The Division Method. Divide by 16 until you reach zero, and then collect the remainders in reverse. Ex 1: = 7E 16 16) 126 Rem: 16) 7 14=E 0 7

29 Decimal to Hexa Conversion Ex 2: = 16 ) 810 Rem: 16 ) Answer: = 16

30 Decimal to Hexa Conversion The Subtraction Method: Subtract out multiples of the largest power of 16 possible (without going below zero) each time until you reach 0. Place the multiple value in each position where you were able to subtract the value, and a 0 in each position that you could not subtract out the value without going below zero.

31 Decimal to Hexa Conversion Ex 1: | | | 3 2 A Answer: = 32A 16

32 Decimal to Hexa Conversion Ex 2: | | | Answer: = 16

33 Binary to Octal Conversion Since the maximum value represented in 3 bit is equal to: 2 3 – 1 = 7 i.e. using 3 bits we can represent values from 0 –7 which are the digits of the Octal numbering system. Thus, three binary digits can be converted to one octal digit.

34 Binary to Octal Conversion Three-bit GroupDecimal DigitOctal Digit

35 Octal to Binary Conversion Ex : Convert = 2 7 = = = =

36 Binary to Octal Conversion Ex : Convert = = = = 2 ( pad empty digits with 0) = 246 8

37 Binary to Hexa Conversion Since the maximum value represented in 4 bit is equal to: 2 4 – 1 = 15 i.e. using 4 bits we can represent values from 0 –15 which are the digits of the Hexadecimal numbering system. Thus, Four binary digits can be converted to one Hexadecimal digit.

38 Binary to Hexa conversion Four-bit GroupDecimal DigitHexadecimal Digit A B C D E F

39 Hexa to Binary Conversion Ex : Convert 3D9 8 = 2 3 = 0011 D = = D9 8 =

40 Binary to Hexa Conversion Ex : Convert = = = A = A6 16

41 Octal to Hexa Conversion To convert between Octal to Hexadecimal numbering systems and visa versa convert from one system to binary first then convert from binary to the new numbering system

42 Hexa to Octal Conversion Ex : Convert E8A 16 = (group by 3 bits) E8A 16 =

43 Octal to Hexa Conversion Ex : Convert = (group by 4 bits) EA1EA = 1EA 16


Download ppt "Number Systems Decimal Binary Denary Octal Hexadecimal Click the mouse or Press the space bar to Continue."

Similar presentations


Ads by Google