Presentation is loading. Please wait.

Presentation is loading. Please wait.

O-MC Signal Research, Inc. A Wireless Research Design & Development Company March 24, 2003.

Similar presentations


Presentation on theme: "O-MC Signal Research, Inc. A Wireless Research Design & Development Company March 24, 2003."— Presentation transcript:

1 O-MC Signal Research, Inc. A Wireless Research Design & Development Company March 24, 2003

2 BACKGROUND O-MC Signal Research, Inc. Founded in 1988. Headquarters in Bloomfield, New Jersey Original business plan focused on the defense industry. Navy Small Business Innovation Research contract lead to a patent on quantum cryptography. This business is currently being pursued. Wireless program initiated in 1996 with contract from Omnipoint. Our current business plan has two major areas of focus: –Wireless design and development projects. –Quantum cryptography.

3 WIRELESS TECHNICAL FOCUS In-Building Design Wireless Network Design Wireless Network Optimization Frequency Planning Site Audits Zoning Hearings Site Maintenance

4 WHY ADD WIRELESS IN- BUILDING COVERAGE QUALITY WIRELESS COVERAGE FOR TENANTS –voice –data SAFETY PHONE COVERAGE IN UNDERGROUND GARAGES PHONE COVERAGE IN PARKING LOTS PHONE COVERAGE FOR EMERGENCIES PHONE COVERAGE FOR ELDERLY OR HANDICAPPED

5 WHAT WE CAN OFFER To YOUR COMPANY Well trained senior engineers with extensive wireless experience in network design, optimization, frequency planning, and maintenance Task Specific Project Managers Turn-key project managers

6 EXPERIENCED ENGINEERING STAFF Currently we have twenty senior engineers with extensive GSM design and optimization experience available for near-term assignments. Additional engineers can be made available for programs that allow for longer-term planning. Other standards (CDMA, iDEN) are familiar to our staff. This engineering staff was instrumental with the original GSM build-out of the New York Major Trading Area (NYMTA) under Omnipoint. Our staff is thoroughly familiar with several software design tools as well as MapInfo.

7 TECHNICAL EXPERIENCE (Wireless Standards) GSM GPRS CDMA 2000 W-CDMA

8 EXPERIENCE (GEOGRAPHICAL) Entire NYMTA (New York Major Trading Area) –Canyons of Manhattan –Suburb On-Street Designs –Hills and forested rural areas –Seashore and over-water propagation –Rural Interstate Highway designs

9

10 EXPERIENCE (EQUIPMENT) Nortel BTSs Ericsson BTSs Siemens BTSs Lucent BTSs Motorola BTSs Low Noise Amplifiers - Theory and Design Antenna Design Features

11 BUSINESS OBJECTIVES OUR BUSINESS MODEL IS TARGETED FOR O-MC SIGNAL RESEARCH TO BECOME A LEADER IN IN-BUILDING DESIGN AND DEVELOPMENT BY WORKING WITH CONTRACTORS, REALTORS, PROPERTY OWNERS, AND WIRELESS CARRIERS

12 ADDITIONAL SERVICES OFFERED Rooftop Designs Monopole Designs Microcell design RF frequency planning and optimization of bridges Site Expansion

13 SITE SURVEY ACTIVITIES Physical Inventory Site configuration documented with As-Built Drawings Pictures Emergency backup power BTS performance testing Grounding Antenna alignments Cable sweeps Interference analysis RF power output testing Visual workmanship inspections Inspect and repair as needed

14 SITE SURVEY AND REPAIR PROGRAM OBJECTIVE: Improve network performance –Capacity –Coverage –High-speed data enhancements –Frequency verification –Optimization –Interference analysis

15 TESTING SERVICES In-building signal level evaluations In-Fill site testing Optimization Public safety radio coverage testing Interference data collection Special test equipment design and testing

16 In-Building DESIGN AND DEVELOPMENT

17

18 In-Building Venues Office building Apartment building Hotels and Conference Centers Tunnels Subway stations Shopping Centers and Malls Multiple Building Campus Settings

19 In-Building Questions to be Asked What type of coverage is desired? –A single carrier? –A selection of carriers? –All carriers (cellular, PCS, Paging)? How many users need to be serviced? Over-air or Dedicated Base Station Who pays for infrastructure installation? Property owner? Carriers? Neutral host?

20 EQUIPMENT DECISIONS What is in-building requirement driver? –Voice? –Data? What equipment best serves this particular customer? –Repeaters/Bi-Directional Amplifiers? –Microcells? –Full sized Base Station?

21 Competing In-Building Design Technologies Distributed Antenna in-building design Leaky coax tunnel and subway design Fiber optic cable in-building design

22 RECOMMENDED APPROACH For Small to Medium Venues Passive coaxial cable and Distributed Antenna LNAs will be considered for larger area projects or where up-link link imbalance exists Fiber Optic System will be used for multiple building or campus-like design requirements. Large airports are a good example of a proper venue for a fiber optic in-building infrastructure.

23 All Passive In-Building Justification –Increase MTBF –Reduces maintenance –Reduced complexity –Reduced parts count –Reduced cost

24 TECHNICAL AND DEVELOPMENTAL DETAILS FOR IN-BUILDING DESIGN

25 DESIGN CONCEPT NSU at lower floor or rooftop Separate Tx & Rx paths Antennas on every second or third floor Four antenna per floor Each antenna covers 16,384 SQ FT 20 dB directional couplers will be used 1/2 or 7/8 coaxial cables will be used

26 DESIGN CONCEPTS (CONT) Place antennas near all elevator shafts Point antennas away from outer walls Assume 15 dB attenuation for floors Build-out should start at the top of the building. Results to be tested using CW test equipment after each floor is completed.

27

28

29 DESIGN CONCEPT RULES No power handling limitations to carriers Assume a balanced network for GSM with mobile at + 30 dBm; BTS at + 35 dBm/channel Using 20 dB directional couplers the output to antenna will be at - 4 dBm Each antenna will cover as much as 205,887 SQ FT assuming a 9 dB per octave loss factor

30 Examples of Coverage Area PL (dB)Radius (ft)Area (SQ FT)No of 10x10 OfficesDimensions 105298355,216/1,420,864 3552/142091192 x 1192 103256262144/10485762621/104861024 x 1024 94128 65536/262144655/2621 512 x 512 85 6416384/65536164/655 256 x 256 76 324096/1638441/164 128 x 128

31 LINK BUDGETS DOWNLINK Power Output+35 dBm Antenna Gain 3 dB Path Loss (NSU) - 10 dB Path Loss (SDU) - 20 dB Path Loss (Cables) - 2 dB Path Loss (4-way Splitter) - 6 dB Receiver Sensitivity -104 dBm PATH LOSS-104 dB UPLINK Power Output +30 dBm Antenna Gain 3 dB Path Loss (NSU) -10 dB Path Loss (SDU) - 20 dB Path Loss (Cables) - 2 dB Path Loss (4-Way Combiner) - 6 dB Receiver Sensitivity- 110 dBm PATH LOSS- 105 dB

32 Path Loss as a Function of Distance from Antenna Area covered by each antenna A = pi ® A1 = 3.1416 (256) = 205,887 sq ft A2 = 3.1416 (128) = 51,472 sq ft A3 = 3.1416 (64) = 3,217 sq ft

33 PROPAGATION LOSS Place propagation path loss calculations here

34 OTHER SERVICES

35

36

37

38

39


Download ppt "O-MC Signal Research, Inc. A Wireless Research Design & Development Company March 24, 2003."

Similar presentations


Ads by Google