Download presentation

Presentation is loading. Please wait.

Published byAnna Lopez Modified over 2 years ago

1

2
The MAP s Team

3
G rade L evel C ontent E xpectations Grade 5 Science Teacher Workshops Measuring Changes in Motion MAP Team Developed by: Mr. P. A. Klozik & Dr. M. H. Suckley Materials in this presentation are based upon the Grade Level Content Expectations provided by the Michigan State Board of Education. The activities and support materials have been inspired by Operation Physics. Participants registered for this workshop have permission to copy limited portions of these materials for their own personal classroom use. On this Thursday, January 16, 2014 Right at 01:29

4
Science Standards Grade 5 Process Inquiry Process Inquiry Analysis and Communication Reflection and Social Implications Content Force and Motion Force Interactions Force Motion / Speed Grade Level Mathematics Expectations Presentation

5
Inquiry Process K-7 Standard S.IP: Develop an understanding that scientific inquiry and reasoning involves observing, questioning, investigating, recording, and developing solutions to problems. S.IP.M.1 Inquiry involves generating questions, conducting investigations, and developing solutions to problems through reasoning and observation. S.IP Generate scientific questions about motion based on observations, investigations, and research S.IP Design and conduct scientific investigations on motion and changes in motion. S.IP Use tools and equipment (stop watches, meter sticks and tapes, models, balances) appropriate to scientific investigation of motion. S.IP.05.14Use metric measurement devices in the investigation of motion. S.IP Construct charts and graphs from data and observations dealing with motion and changes in motion. S.IP Identify patterns in data regarding motion. Back K-7 Standard S.IP: Develop an understanding that scientific inquiry and reasoning involves observing, questioning, investigating, recording, and developing solutions to problems. 1

6
Inquiry Analysis and Communication K-7 Standard S.IA: Develop an understanding that scientific inquiry and investigations require analysis and communication of findings, using appropriate technology. S.IA.M.1 Inquiry includes an analysis and presentation of findings that lead to future questions, research, and investigations. S.IA Analyze information from data tables and graphs to answer scientific questions on motion. S.IA Evaluate data, claims, and personal knowledge through collaborative science discourse about motion. S.IA Communicate and defend findings of observations and investigations about motion using evidence. S.IA Draw conclusions from sets of data from multiple trials of a scientific investigation on motion and changes in motion. S.IA Use multiple sources of information on motion and changes in motion to evaluate strengths and weaknesses of claims, arguments, or data. Back K-7 Standard S.IA: Develop an understanding that scientific inquiry and investigations require analysis and communication of findings, using appropriate technology. 1

7
Reflection And Social Implications K-7 Standard S.RS: Develop an understanding that claims and evidence for their scientific merit should be analyzed. Understand how scientists decide what constitutes scientific knowledge. Develop an understanding of the importance of reflection on scientific knowledge and its application to new situations to better understand the role of science in society and technology. S.RS.M.1 Reflecting on knowledge is the application of scientific knowledge to new and different situations. Reflecting on knowledge requires careful analysis of evidence that guides decision-making and the application of science throughout history and within society. S.RS Evaluate the strengths and weaknesses of claims, arguments, and data regarding motion and changes in motion. S.RS Describe limitations in personal and scientific knowledge regarding motion and changes in motion. S.RS.05.13Identify the need for evidence in making scientific decisions about motion. S.RS Demonstrate scientific concepts about motion through various illustrations, performances, models, exhibits, and activities. S.RS Design solutions to problems concerning the motion of objects using technology. S.RS Describe the effect humans and other organisms have on the balance in the natural world when force is applied to an object. S.RS Describe how science and technology of motion have advanced because of the contributions of many people throughout history and across cultures. Back K-7 Standard S.RS: Develop an understanding that claims and evidence for their scientific merit should be analyzed. Understand how scientists decide what constitutes scientific knowledge. Develop an understanding of the importance of reflection on scientific knowledge and its application to new situations to better understand the role of science in society and technology. 1

8
P.FM: Forces and Motion Develop an understanding that the position and/or motion of an object is relative to a point of reference. Understand forces affect the motion and speed of an object and that the net force on an object is the total of all of the forces acting on it. Understand the Earth pulls down on objects with a force called gravity. Develop an understanding that some forces are in direct contact with objects, while other forces are not in direct contact with objects. P.FM.M.2 Force Interactions- Some forces between objects act when the objects are in direct contact (touching), such as friction and air resistance, or when they are not in direct contact (not touching), such as magnetic force, electrical force, and gravitational force. P.FM Distinguish between contact forces and non-contact forces. P.FM.05.22Demonstrate contact and non-contact forces to change the motion of an object. P.FM.M.3 Force- Forces have a magnitude and direction. Forces can be added. The net force on an object is the sum of all of the forces acting on the object. The speed and/or direction of motion of an object changes when a non-zero net force is applied to it. A balanced force on an object does not change the motion of the object (the object either remains at rest or continues to move at a constant speed in a straight line). P.FM Describe what happens when two forces act on an object in the same or opposing directions. P.FM.05.32Describe how constant motion is the result of balanced (zero net) forces. P.FM Describe how changes in the motion of objects are caused by a non-zero net (unbalanced) force. P.FM Relate the size of change in motion to the strength of unbalanced forces and the mass of the object. Back

9
P.FM.M.4 Speed- Motion can be described by a change in position relative to a point of reference. The motion of an object can be described by its speed and the direction it is moving. The position and speed of an object can be measured and graphed as a function of time. P.FM.05.41Explain the motion of an object relative to a point of reference. P.FM Describe the motion of an object in terms of distance, time and direction, as the object moves, and in relationship to other objects. P.FM Demonstrate how motion can be measured and represented on a graph. Back

10
N.ME Understand the relative magnitude of ones, tenths, and hundredths and the relationship of each place value to the place to its right. N.ME Multiply a whole number by powers of 10: 0.01, 0.1, 1, 10, 100, 1000, and identity patterns. N.FL Divide numbers by 10s,100s, 1000s using mental strategies. M.UN Compare the relative sizes of one cubic inch to one cubic foot, and one cubic centimeter to one cubic meter. M.UN Convert measurements of length and weight within a given system using easily manipulated numbers. D.RE Read and interpret line graphs, e.g., distance-time graphs. Grade 5 Grade Level Mathematics Expectations Back Math Integration

11
Measuring Changes in Motion A. Newtons First Law B. Newtons Second Law C. Newtons Third Law Naïve ideas Concerning Force & Motion

12
A. Newtons First Law Newtons First Law 1. Motion a. Measuring the Velocity of Various Objects Measuring the Velocity of Various Objects b. People Walk – Velocity People Walk – Velocity c. Measuring the Motion of a Toy Car Measuring the Motion of a Toy Car 2. Inertia ExplainedInertia Explained a. Experimenting with Inertia Experimenting with Inertia b. Inertia Demonstrations Inertia Demonstrations Measuring Changes in Motion

13
B Newtons Second Law Newtons Second Law 1. Acceleration (change in velocity) b. Observing Acceleration Observing Acceleration a. People Walk - Acceleration People Walk - Acceleration c. Acceleration A More Complete Picture Acceleration A More Complete Picture 2. Fundamentals of Force a. Observing Forces (using the Gizmo) Observing Forces (using the Gizmo) b. Finding The Forces Finding The Forces c. Understanding Types of Force Understanding Types of Force d. Forces in a Collision Forces in a Collision e. The Falling Cup The Falling Cup 3. The Affect of Mass on Acceleration The Affect of Mass on Acceleration Measuring Changes in Motion

14
C. Newtons Third Law Newtons Third Law 1. Equal and Opposite Equal and Opposite 2. Equal and Opposite Another Look Equal and Opposite Another Look Measuring Changes in Motion

15
We Had A Great Time

16
Naïve ideas: 1.The distance an object travels and its displacement are always the same. 2.An objects speed and velocity are always the same. 3. An object having inertia is always at rest. 4. Acceleration is always in a straight line. 5. Acceleration means that an object is speeding up. 6. The numerical value of acceleration is always a positive number. 6

17
Acceptance of a New Concept A widely accepted way to explain how learners adopt new understandings of concept is presented in the Conceptual Change Model (CCM)*. There are two major components to the Conceptual Change Model. 1. The three conditions needed to adopt a new concept. a. dissatisfaction with their existing conception, b. the new concept is understandable c. the new concept is plausible and fruitful. 2. The status of the new concept. A conception has status when it meets any of the aforementioned conditions; however, the more conditions that the new conception meets, the higher the status the new conception obtains, and hence, a higher probability of being adopted. References *Posner, G.J., K.A. Strike, P.W. Hewson, and W.A. Gertzog Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education 66:

18
N ewtons F irst L aw An object stays at rest or continues to move in a straight line at a constant speed unless acted on by a force. V = d / t

19
ObjectDistanceTimeSpeedAverageDistanceTimeSpeedAverage 1. Toy CarsToy Cars Battery Powered CarPull Back Car Trial 1 Trial 2 Trial 3 2. Flowing WaterFlowing 400-ml. Beaker250-ml. Beaker Trial 1 Trial 2 Trial 3 3. Clock HandsClock Wall ClockWrist Watch With Second Hand Trial 1 Trial 2 4. Bouncing BallBouncing Tennis BallSuper Ball Trial 1 Trial 2 Trial 3 5. SoundSound Speed of Sound Trial 1 Trial 2 Trial 2 Measuring The Velocity of Various Objects

20
People Walk - Velocity Student Name Trial – seconds Average seconds Distance meters Speed m/s Average: Start Finish

21
Measuring Motion of a Toy Car Velocity Meters/sec Distance meters Average Sec. Trial 3 Sec. Trial 2 Sec. Trial 1 Sec. Finish PointStarting Point.50-meters t0t0 t1t1 0 Equipment Set-Up 6 Time Distance

22

23
What is Inertia? Answer: The tendency of matter to remain at rest if it is at rest or, if moving, the tendency to keep moving in the same direction unless acted upon by some outside force. 2 1

24
Newton's First Law - Inertia Objects at rest remain at rest. A lot of inertia! Very little inertia. Since the train is so huge, it is difficult to move the train from rest.Since the baby carriage is so small, it is very easy to move from rest. Objects in motion remain in motion in a straight line (unless acted upon by an outside force). A lot of inertia! Very little inertia Since the train is so huge, it is difficult to stop it once it is moving. Since the soccer ball is so small, it is very easy to stop it once it is moving. 0

25
Inertia Applying Small Force Applying Large Force 2

26
Inertia - Using Your Marbles 5

27
Newtons First Law 2 4

28
3

29
2

30
1 Click for Inertia Movie

31
Newtons First Law 0

32
Newtons Second Law When a force acts on a moving object, it will accelerate in the direction of the force dependent on its mass and the force. F = m x a

33
Observing Acceleration - of a Toy Car 9 Starting Point t0t0 t1t1 t2t meter.150-meter.500-meter Finish Acceleration is the change in velocity over time. Therefore we will obtain the velocity at two points and determine the change. BA To obtain the acceleration of the car: Obtain the velocity of the 0.35-m distance. V1 = d/ t A Remember that: V = d / t d= 0.35-m t A = t 1 – t 0 Obtain the velocity of the 0.15-m distance V2 = d/ t B d = 0.15-m t B = ((t 2 – t 0 ) - (t 1 – t 0 )) Determine the amount of time for that change time at point A = t A / 2 time at point B = t B / 2 time = A – B acceleration = (V 1 – V 2 ) / t 1

34
Observing Acceleration - of a Toy Car m/s/s.73-m/s sec 0.16-m/s (8) a = acceleration between points a = v / t (7) T = change in time between adjacent velocity t = T B – T A (6) v = change in adjacent velocity v= v 2 – v 1 T B = (t 2 + t 1 ) / sec T A = t 1 / sec 6) Time (when average velocity occurred) V m/s V m/s (5) Average velocity v = d / t (4) Average Time Third time trial Second time trial First time trial m t 2 = t 0 t 2 13 Starting Point A B t0t0 t1t1 t2t meter. 150-meter. 500-meter 0 Position A Position B m t 1 t 2 (t 2 - t 1 ) m t 1 = t 0 t 1

35
People Walk - Acceleration Start Finish t0t0 t1t1 t2t2 t3t3 d = 2.0-m AB C t0t1t2t3 First time trial0 Second time trial0 Third time trial0 Average time0 Time to travel 2.0 meters t1 - t0t2 - t1t3 - t2 Average velocity v = d / t (d = 2.0 meters) Point. A V1 = 2.0 / (t1-t0) Point. B V2 = 2.0 / (t2-t1) Point. C V3 = 2.0 / (t3-t2) Average time the velocity actually occurred Point. A T1=(t0+t1)/ 2 Point. B T2=(t1+t2) / 2 Point. C T3=(t2+t3) / 2 T= change in time between adjacent velocity T1 = T2 -T1 T2 = T3 -T2 V= change in adjacent velocity V1 = V2 -V1 V2 = V3 -V2 a (acceleration) = V / T a1 = V1 / T1a2 = V2 / T2 Data Collection and Analysis

36
Acceleration – A More Complete Picture Excel WorksheetExcel Worksheet – Push F9 to Reveal Calculations

37 0

38
Observing Forces Bubble Level Accelerometer It moves towards the center of rotation Circular It moves backward Backward It moves forward Forward It remains constant None Direction of FORCE ( movement of the accelerometer bubble ) Movement of the Car 8

39
Understanding Forces 2 Pushes and Pulls Types of Forces S cience S cene

40
Finding The Forces Activities Read the description in the handout and identify the Forces for each activity

41
Finding The Forces Activities At Rest 2. At Rest 3. At Rest 4. At Rest 7. Accelerating 6. At Rest and Accelerating Moving With Constant Speed but accelerating 5.

42
Understanding Types of Forces A force is defined as any push or pull that results in accelerating motion Circular - When objects move in circles, a force acts with a direction that is toward the center of the circle. We call this direction CENTRIPETAL Gravitational - All objects attract all other objects with a force called gravitational force. Electromagnetic - Electric forces act on objects when the object carries a net electric charge or a non-uniform distribution of charge. Magnetic force is also observed around a moving electric charge and act on those charges. Physicists believe that all magnetic forces are produced by moving charges. Frictional - Frictional forces are often classified as sliding, rolling, static and fluid. Sliding and rolling frictional forces result when solids in contact pass by each other. Static frictional force results when solids are in contact, at rest and when a force or forces are trying to cause them to move with respect to each other. Fluid frictional force results when a solid is moving through a gas or a liquid. Normal - Normal means perpendicular to. Whenever an object is placed on a surface, a force acts normal to the surfaces in contact. This causes the supporting surface to sag. Since this sagging is slight, it often goes unnoticed. However, it is always there and the resulting force of the surface attempting to return to its original position is perpendicular to the surface. Tension - Tension force is the force exerted by a string, spring, beam or other object which is being stretched compressed. The electric forces among the molecules give rise to the force. Circular Gravitational Electromagnetic Frictional Normal Tension 7

43
Forces in a Collision 1.The diagram shows a child and an adult pushing on each other while holding bathroom scales to measure the forces. Predict how they will move. Explain your prediction. (Does the answer depend on who does the pushing? What if both push at the same time?) 2.Which scale will show the biggest number? 3.Suppose the situation was slightly different than the illustration. For each situation below, predict how the readings on the scales would compare with each other. Explain your predictions. a. If the adults chair was backed up against a wall. b. If the childs chair was backed up against a wall. c. If both chairs were backed up against a wall.

44
The Falling Cup

45
T he A ffect of M ass on A cceleration Velocity Meters/sec Distance meters Average Sec. Trial 3 Sec. Trial 2 Sec. Trial 1 Sec. With Without Battery 8

46
N ewtons T hird L aw E very A ction H as An E qual And O pposite R eaction. f 1 = f 2 3

47
Newtons Third Law 2 1

48
1

49 0

50
Slippery Plastic Equal and Opposite - Newtons Third Law 1. Crumple the plastic until it looks very wrinkled 2. Place the slippery plastic on a solid, flat surface. 3. Place the car on top on the slippery plastic. 4. Start the car and observe the car and the slippery plastic. 4

51
Equal and Opposite, Another Look 1. Place two soda cans on a flat surface approximately 25-cm apart. 2. Place the plastic on top of the soda cans. 3. Place the car on top on the plastic as shown. 4. Start the car and carefully observe the car and the plastic. 1 3

52
Newtons Third Law 0

53

54
We Had A Great Time

55
MAKING FORMULAS OUT OF WORDS Note: to make the equation simple we place in place of the word change Note: The arrow indicates a change in direction 7

56
Measuring the Small Car Motion

57
2

58
1

59 0

60
Time The interval between two events. STARTSTART STOPSTOP

61
Distance The interval between two objects. STARTSTART STOPSTOP

62
Toy Cars

63
Velocity = Distance / time

64
Water

65
Measuring the Filling Speed of Water a.Turn the water on at a moderate rate. Keep this flow constant for both beakers. b.Fill the 400 ml. beaker with any amount (approximately one fourth of the beaker) of water, while timing (t). c.Mark the top of the water, and measure its distance in meters from the bottom of the beaker to the top of the water. d.Repeat this for two additional readings. e.Compute the distance (x) the water level rose using: x1 = L1 - L0 x2 = L2 - L1 x3 = L3 - L2 f.Compute the velocity of water flow using: v = x / t. g.Repeat this for two additional readings. h.Obtain average velocity of the water flow. i.Repeat for a 250 ml beaker. 3

66
Clock

67
Measuring The Speed Of A Clocks Second Hand S cience S cene.com a. Select a wall clock with a second hand. b. As the tip of the second hand rotates around the center of the clock traveling a certain distance (x), in a given time (t). d. Compute the distance traveled by the outer point of the second. e. Compute the speed using: v = x / t 1)The tip of the second hand moves in a circle. In order to find the distance traveled, we must find the circumference of that circle. To determine the circumference, we must measure the radius (r) of the circle in meters. The radius is the distance between the center of the clock, and the tip of the second hand. Double that figure to obtain the diameter, and multiply that result by pi (3.14). 2) The total distance traveled would be the number of full revolutions (N) multiplied by the distance traveled or x = (N) x 2r x Call this distance x, and record. Note:

68
Bouncing Ball

69
Measuring The Velocity Of A Bouncing Ball. a.The total distance (x) that the ball traveled is equal to the sum of the heights x 1, x 2 and x 3. The initial height is x 1, the final height is (x 3 ) and the average of x 1 and x 3 is x 2. The total distance (x) that the ball traveled is equal to the sum of the heights (x = x 1 + x 2 + x 2 + x 3 ). The heights are most easily measured by bouncing the ball near a wall, using the brick divisions to help in the measurement of the height of the bounce. b. The time (t) taken for the ball to make two bounces would be measured from the starting point (the release point), to the end point (the top of the second bounce). c. Compute the average speed using: v = x / t. d.Collect three sets of data and calculate the average velocity. e. Repeat for the second ball Simulation x1x1 x2x2 x2x2 x3x3 Total Distance (x) = x 1 + x 2 + x 2 + x 3 1

70
Sound

71
Observers start their stopwatches when they see the flash of light created at the same instant a loud sound occurs. They stop their stopwatches when they hear the sound. Using their data calculate the speed of sound. BANG! 1.08-sec m sec m sec m1 VelocityTimeDistanceTrial Speed Of Sound 1. Experimental Speed of Sound = distance / time 2. Theoretical Speed of Sound = 330 m/sec. + (.6 m/sec. x Temperature) 3. Temperature = 23.1 ºC 4. Calculate Percent of Error 2

72
Circular Motion

73
ID CP R4R4 ID CP R1R1 R2R2 R3R3 ID = Inertia direction R x = Resultant of Inertia & Center Pull CP = Center Pull direction The following diagram helps to explain the circular motion of an object. This motion depends on the objects inertia, straight line direction, and the force applied by a string pulling the object towards the center of the circle. 0 3

74
Making the Stopwatch

75
The Stopwatch

76
We Had A Great Time

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google