Download presentation

Presentation is loading. Please wait.

Published byJasmin Elliot Modified over 3 years ago

1
1 ENGG 1015 Tutorial Revision tutorial 11 Dec Learning Objectives Prepare for the examination News Examination Closed book; Need to bring calculators SETL (Online evaluation) HW2, HW3

2
2 To Refresh Your Memory In the semester, you have learnt… Combinational Logic – Truth table/schematics/Boolean expression, SOP/POS, DeMorgans Theorem, K-Map, adder structure Sequential Circuit – Flip flop, Finite State Machine, clock and timing Electrical Circuit – Primitives, KCL/KVL, series/parallel connection, voltage/current divider, loading and buffer Operational Amplifier – Non-inverting amplifier Signals, Systems, Control – Signal flow graph, difference equation, operators, z-transform, feedback control Computer Systems – Binary representation, addition/subtraction for integers, 2s complement

3
Past Papers (E: Examination; H: Homework) Systems: 11H1Q1/Q2, 10H1Q1/Q2 Combinational logic: 11EQ5, 10EQ5, 11H2Q5/Q6, 10H2Q5/Q6, 11H3Q1/Q2/Q3, 10H3Q1/Q2/Q3 Sequential logic: New Electrical circuit: 11EQ3, 10EQ2, 11H1Q3/Q4/Q5/Q6, 11H1Q4/Q5/Q6/Q7 Signals and control: New Computer system: 11EQ6, 10EQ6, 11H2Q4, 10H2Q3/Q4 3

4
Lab (L: Lab; C: Checkoff) Combinational logic: L1 C1/C2/C3, L2 C1/C2/C3 Sequential logic: L3 C1/C2/C3 Electrical circuit: L4 C1/C2, L5 C1/C2/C3, L6 C1/C2/C3 Signals and control: L7 C1/C2/C3, L8 C1/SC Computer system: N/A 4

5
Block Diagrams for Control (1) 5

6
Block Diagram for Control (2) Let the controller C(z) be A, the system P(z) be C, and the sensor G(z) be D. First-order system with one pole at 6

7
Block Diagram for Control (3) Let C(z) be B, P(z) be C, and G(z) be B. A second-order system with two poles at 7

8
Smart Air-conditioner Control (1) Let T room be the current room temperature. Also, define T UTH and T LTH be two threshold voltages set by the user, where T UTH >T LTH. When T room > T UTH, AND compressor is off, then the compressor of the air-conditioner should turn on to lower the room temperature. When T room < T LTH, AND compressor is on, then compressor of the air-conditioner should turn on, and the room temperature rises. Otherwise, the operation of the compressor stays unchanged. 8

9
Smart Air-conditioner Control (2) Using the digitized information DL and DH about the room temperature, implement the air-conditioner control as a state machine. Your state machine should have 1 single output called ON. The air-conditioner compressor is turned on only when ON is TRUE. Construct based on logic 9

10
Smart Air-conditioner Control (3) If instead we want to set the temperature to be lower, with T UTH = 24 and T LTH = 22, suggest a way to achieve this adjustment. Upper comparator: 6V to input B Lower comparator: 2.4V to input B R 1 = R - R 2 = 0.6R 10 R1R1 R2R2

11
Bidirectional Motor Driver (1) Using your knowledge from labs and lectures, complete the following circuit to drive a motor in both directions depending on the value of the potentiometer. 11

12
Bidirectional Motor Driver (2) Referring to the bidirectional motor driver circuit, let k A be the gain of the non-inverting amplifier on the left. Show that within the operating range of this circuit (i.e., no saturation), a change in V p by V p results in a change of V motor by k A V p. 12

13
Bidirectional Motor Driver (3) 13

14
Circuits and Sensors (1) In this QTI circuit, we assume that R 0 is 500Ω and that R ir is maximum when it is dark (R max = 1k ). When it is bright, R ir is minimum (R min = 100 ). Note that V cc is 12V. The datasheet of the lamp states that it only turns on when the voltage across the lamp (V L ) > 5V. Each lamp has an internal resistance of 1k. The goal is to turn on a lamp when it is dark. One of your team members suggests connecting the terminal red directly to the lamp, terminal white to V cc terminal black is grounded. Will this configuration work? 14

15
Circuits and Sensors (2) Let R L be the resistance combining R ir and the resistance of the lamp, put in a parallel configuration. When it is dark (R max = 1k), the total loading resistance is R L = 500, and therefore the voltage across the lamp (V L ) is 6V. This is enough to turn on the lamp. When it is bright, R max = 100 and R L = 90.9. Thus, the lamp is off. 15

16
Circuits and Sensors (3) Now you have to connect two more lamps in parallel with the first one (i.e. 3 lamps in total). What is the problem? The total loading resistance (when it is dark) will become R L = 250 (Parallel connection of resistors), and therefore V L = 4V. Therefore, it is not enough to turn on the lamps. Therefore, a buffer should be used. 16

17
Circuits and Sensors (4) How the buffer should be connected? 17 0 0 0 0 VpVp VpVp

18
Difference Equations (1) Difference equation: Transfer function: Poles: 18

19
Difference Equations (2) Partial fraction: Impulse function: 19

Similar presentations

OK

ADDING INTEGERS 1. POS. + POS. = POS. 2. NEG. + NEG. = NEG. 3. POS. + NEG. OR NEG. + POS. SUBTRACT TAKE SIGN OF BIGGER ABSOLUTE VALUE.

ADDING INTEGERS 1. POS. + POS. = POS. 2. NEG. + NEG. = NEG. 3. POS. + NEG. OR NEG. + POS. SUBTRACT TAKE SIGN OF BIGGER ABSOLUTE VALUE.

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on ms word 2007 tutorial Ppt on lifelines of national economy for class 10 Ppt on microsoft excel 2003 Ppt on human resource management system project Ppt on different types of soil in india Ppt on obstructive jaundice Ppt on fundamental rights and duties Ppt on chromosomes and genes mutation Free download ppt on gas turbine and jet propulsion Ppt on political parties and electoral process in nigeria