Presentation is loading. Please wait.

Presentation is loading. Please wait.

Penn ESE370 Fall2011 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 12: October 3, 2011 Variation.

Similar presentations


Presentation on theme: "Penn ESE370 Fall2011 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 12: October 3, 2011 Variation."— Presentation transcript:

1 Penn ESE370 Fall2011 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 12: October 3, 2011 Variation

2 Previously Understand how to model transistor behavior Given that we know its parameters –V dd, V th, t OX, C OX, W, L, N A … Penn ESE370 Fall2011 -- DeHon 2 C GC C GCS C GCB

3 But… We don’t know its parameters (perfectly) 1.Fabrication parameters have error range 2.Identically drawn devices differ 3.Parameters change with environment (e.g. Temperature) 4.Parameters change with time (aging) Why I am more concerned with robustness than precision. Penn ESE370 Fall2011 -- DeHon 3

4 Today Sources of Variation –Fabrication –Operation –Aging Coping with Variation –Margin –Corners –Binning Penn ESE370 Fall2011 -- DeHon 4

5 Fabrication Penn ESE370 Fall2011 -- DeHon 5

6 Process Shift Oxide thickness Doping level Layer alignment Growth and Etch rates and times –Depend on chemical concentrations How precisely can we control those? Vary machine-to-machine, day-to-day Impact all transistors on wafer Penn ESE370 Fall2011 -- DeHon 6

7 Systematic Spatial Parameters change consistently across wafer or chip based on location Chemical-Mechanical Polishing (CMP) –Dishing Lens distortion Penn ESE370 Fall2011 -- DeHon 7

8 FPGA Systematic Variation 65nm Virtex 5 Penn ESE370 Fall2011 -- DeHon 8 [Tuan et al. / ISQED 2010]

9 Penn ESE370 Fall2011 -- DeHon 9 Oxide Thickness [Asenov et al. TRED 2002]

10 Penn ESE370 Fall2011 -- DeHon 10 Line Edge Roughness 1.2  m and 2.4  m lines From: http://www.microtechweb.com/2d/lw_pict.htm

11 Optical Sources What is the shortest wavelength of visible light? How compare to 45nm feature size? Penn ESE370 Fall2011 -- DeHon 11

12 Penn ESE370 Fall2011 -- DeHon 12 Phase Shift Masking Source http://www.synopsys.com/Tools/Manufacturing/MaskSynthesis/PSMCreate/Pages/default.aspx Today’s chips use λ =193nm

13 Penn ESE370 Fall2011 -- DeHon 13 Line Edges (PSM) Source: http://www.solid-state.com/display_article/122066/5/none/none/Feat/Developments-in-materials-for-157nm-photoresists

14 Penn ESE370 Fall2011 -- DeHon 14 Intel 65nm SRAM (PSM) Source: http://www.intel.com/technology/itj/2008/v12i2/5-design/figures/Figure_5_lg.gif

15 Penn ESE370 Fall2011 -- DeHon 15 Statistical Dopant Placement [Bernstein et al, IBM JRD 2006]

16 Random Trans-to-Trans Random dopant fluctuation Local oxide variation Line edge roughness Etch and growth rates –Stochastic process Transistors differ from each other in random ways Penn ESE370 Fall2011 -- DeHon 16

17 Penn ESE370 Fall2011 -- DeHon 17 Source: Noel Menezes, Intel ISPD2007

18 Impact Changes parameters –W, L, t OX, V th Change transistor behavior –W? –L? –t OX? Penn ESE370 Fall2011 -- DeHon 18

19 Example: V th Many physical effects impact V th –Doping, dimensions, roughness Behavior highly dependent on V th Penn ESE370 Fall2011 -- DeHon 19

20 Penn ESE370 Fall2011 -- DeHon 20 V th Variability @ 65nm [Bernstein et al, IBM JRD 2006]

21 Penn ESE534 Spring2010 -- DeHon 21 Impact of V th Variation? Higher V TH ? –Not drive as strongly –I d,sat  (V gs -V TH ) 2 –Performance?

22 Impact Performance V th  I ds  Delay (R on * C load ) Penn ESE370 Fall2011 -- DeHon 22

23 Impact of V th Variation Penn ESE370 Fall2011 -- DeHon 23 Think NMOS Vgs = Vdd

24 FPGA Logic Variation Xilinx Virtex 5 65nm Penn ESE370 Fall2011 -- DeHon 24 [Wong, FPT2007] Altera Cyclone-II 90nm [Tuan et al. / ISQED 2010]

25 Penn ESE534 Spring2010 -- DeHon 25 Impact of V th Variation? Lower V TH ? –Not turn off as well  leaks more

26 Penn ESE370 Fall2011 -- DeHon 26 Borkar (Intel) Micro 37 (2004) 2004

27 Operation Temperature Voltage Penn ESE370 Fall2011 -- DeHon 27

28 Temperature Changes Different ambient environments –January in Maine –July in Philly –Air conditioned machine room Self heat from activity of chip Quality of heat sink (attachment thereof) Penn ESE370 Fall2011 -- DeHon 28

29 Self Heating Penn ESE370 Fall2011 -- DeHon 29 Borkar (Intel) Micro 37 (2004)

30 Temperature (on current?) High temperature –More free thermal energy Easier to conduct Lowers V th –Increase rate of collision Lower saturation velocity Lower saturation voltage Lower peak I ds  slows down Another reason don’t want chips to run hot Penn ESE370 Fall2011 -- DeHon 30

31 Temperature (leakage?) High temperature Lowers V th Penn ESE370 Fall2011 -- DeHon 31

32 Voltage Power supply isn’t perfect Differs from design to design –Board to board? –How precise is regulator? IR-drop in distribution Bounce with current spikes Penn ESE370 Fall2011 -- DeHon 32

33 Aging Hot Carrier NBTI Penn ESE370 Fall2011 -- DeHon 33

34 Hot Carriers Trap electrons in oxide –Also shifts V th Penn ESE370 Fall2011 -- DeHon 34

35 NBTI Negative Bias Temperature Instability –Interface traps, Holes Long-term negative gate-source voltage –Affects PFET most Increase V th Partially recoverable? Temperature dependent Penn ESE370 Fall2011 -- DeHon 35 [Stott, FPGA2010]

36 Measured Accelerated Aging (Cyclone III, 65nm FPGA) Penn ESE370 Fall2011 -- DeHon 36 [Stott, FPGA2010]

37 Coping with Variation Penn ESE370 Fall2011 -- DeHon 37

38 Variation See a range of parameters –L: L min – L max –V th : V th,min – V th,max Penn ESE370 Fall2011 -- DeHon 38

39 Penn ESE534 Spring2010 -- DeHon 39 Impact of Vth Variation Higher V TH –Not drive as strongly –I d,sat  (V gs -V TH ) 2 Lower V TH –Not turn off as well  leaks more

40 Penn ESE370 Fall2011 -- DeHon 40 Variation Margin for expected variation Must assume V th can be any value in range –Speed  assume V th slowest value Probability Distribution V TH I on,min =I on (V th,max ) I d,sat  (V gs -V th ) 2

41 Gaussian Distribution Penn ESE534 Spring2010 -- DeHon 41 From: http://en.wikipedia.org/wiki/File:Standard_deviation_diagram.svg

42 Impact Given –V th,nom = 250mV –Sigma 25mV What maximum V th should expect to see for a circuit of –100 transistors? –1000 transistors? –10 9 transistors? Penn ESE370 Fall2011 -- DeHon 42

43 Variation See a range of parameters –L: L min – L max –V th : V th,min – V th,max Validate design at extremes –Work for both V th,min and V th,max ? –Design for worst-case scenario Penn ESE370 Fall2011 -- DeHon 43

44 Margining Also margin for –Temperature –Voltage –Aging: end-of-life Penn ESE370 Fall2011 -- DeHon 44

45 Process Corners Many effects independent Many parameters With N parameters, –Look only at extreme ends (low, high) –How many cases? Try to identify the {worst,best} set of parameters –Slow corner of design space, fast corner Use corners to bracket behavior Penn ESE370 Fall2011 -- DeHon 45

46 Range of Behavior Still get range of performances Any way to exploit the fact some are faster? Penn ESE370 Fall2011 -- DeHon 46 Probability Distribution Delay

47 Penn ESE370 Fall2011 -- DeHon 47 Speed Binning Probability Distribution Delay Discard Sell Premium Sell nominal Sell cheap

48 Admin HW4 out –All but question 5 should be approachable now Andre out Tuesday Andre back for lecture on Wednesday –Talk about layout … HW4.Q5 First midterm W after break Penn ESE370 Fall2011 -- DeHon 48

49 Idea Parameters Approximate Differ –Chip-to-chip, transistor-to-transistor, over time Robust design accommodates –Tolerance and Margins –Doesn’t depend on precise behavior Penn ESE370 Fall2011 -- DeHon 49


Download ppt "Penn ESE370 Fall2011 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 12: October 3, 2011 Variation."

Similar presentations


Ads by Google