Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Quasar 1317+520: A Laboratory for Particle Acceleration Svetlana Jorstad IAR, Boston U Alan Marscher IAR, Boston U Jonathan Gelbord U. Durham Herman.

Similar presentations


Presentation on theme: "The Quasar 1317+520: A Laboratory for Particle Acceleration Svetlana Jorstad IAR, Boston U Alan Marscher IAR, Boston U Jonathan Gelbord U. Durham Herman."— Presentation transcript:

1 The Quasar 1317+520: A Laboratory for Particle Acceleration Svetlana Jorstad IAR, Boston U Alan Marscher IAR, Boston U Jonathan Gelbord U. Durham Herman Marshall MIT Dan Schwartz SAO Diana Worrall U. Bristol Mark Birkinshaw U. Bristol Eric Perlman FIT Svetlana Jorstad IAR, Boston U Alan Marscher IAR, Boston U Jonathan Gelbord U. Durham Herman Marshall MIT Dan Schwartz SAO Diana Worrall U. Bristol Mark Birkinshaw U. Bristol Eric Perlman FIT

2 Radio Observations with the VLA at 15 GHz B-Array, 2 hr at 5 GHz A-Array, 2 hr S 5GHz = 396 mJy/beam S 15GHz = 347 mJy/beam rms = 0.01 mJy/beam beam = 0.5'' x 0.5'', 0 5 GHz C5 15 GHz z=1.06, D = 7.1 Gpc S 5GHz = 104±15 mJy S 15GHz = 40±8 mJy  rad =0.83±0.03, S = -   C5 =1.2  R C5 =4.3kpc

3 Radio Observations with the VLBA at 15 GHz B-Array, 2 hr at 5 GHz A-Array, 2 hr  app ~5.7  core  5.7 5 GHz C5 J jet/cjet ≈ 8.7  cos  ≈ 0.4  =  1-  -2  - Lorentz factor Aars & Hough 2005

4 Spectral/Polarization Properties of the Jet

5 Magnetic Fileld Structure in the Jet

6 Infrared Observations with Spitzer Space Telescope IRAC with 5.4ks: 4.5  m & 8  m C5: S 4,5  m = 9.6±2.3  Jy S 8  m = 16.6±4.5  Jy  IR =0.96±0.11

7 X-Ray Observations with Chandra: ACIS-S3, 18 ks, 0.2-6 keV C5 N H =1.19x10 20 cm -2 C5:  x =0.75±0.30 S 1keV =2.5±0.7 nJy

8 Prominent Feature C5 at 10'' from the Core blue contours - 0.2-6keV color scale - 8  m pink contours - 5GHz 0.83±0.03 0.96±0.11 0.75±0.30

9 Table 1. Parameters of Jet Components for 0827+243 Comp. Counts X-ray position Radio position X-ray Size Radio Size Flux(0.2-6 keV) Radio Flux R" PA° R" PA° arcsec arcsec 10 -14 erg cm -2 s -1 mJy Core 6703±82 0.97 0.002 212.5 2095.8 C1 7±3 2.50 154.5 2.71 157.8 0.25 0.16 0.26 0.06 C2 30±5 3.80 148.0 - - 0.50 - 0.83 < 0.04 C3 25±5 4.57 151.2 - - 0.55 - 0.89 < 0.04 C4 34±6 5.50 155.0 - - 0.85 - 1.13 < 0.04 C5 18±4 6.02 175.0 6.16 175.9 1.0 - 0.57 0.95 C6 1±1 - - 8.08 -160.0 - 0.55 <0.01 3.88 Table 1. Parameters of Jet Components for 0827+243 Comp. Counts X-ray position Radio position X-ray Size Radio Size Flux(0.2-6 keV) Radio Flux R" PA° R" PA° arcsec arcsec 10 -14 erg cm -2 s -1 mJy Core 6703±82 0.97 0.002 212.5 2095.8 C1 7±3 2.50 154.5 2.71 157.8 0.25 0.16 0.26 0.06 C2 30±5 3.80 148.0 - - 0.50 - 0.83 < 0.04 C3 25±5 4.57 151.2 - - 0.55 - 0.89 < 0.04 C4 34±6 5.50 155.0 - - 0.85 - 1.13 < 0.04 C5 18±4 6.02 175.0 6.16 175.9 1.0 - 0.57 0.95 C6 1±1 - - 8.08 -160.0 - 0.55 <0.01 3.88 Compton Shop http://jca.umbc.edu/~markos/cs The one-zone steady-state model: A sphere of a given radius is moving with a given Lorentz factor through an external photon field with a black body spectrum. An electron distribution with a power law is continuously injected in the sphere. The electrons suffer synchrotron and inverse Compton losses and eventually escape from the source. The system reaches a steady state when the equation for energy conservation is satisfied: L inj = L loss + L esc The code calculates synchrotron, total inverse Compton from all sources of photons, i.e., SSC and EC emission Redshift, z Lorentz factor,  Doppler factor,  Exponent for power law of the electron distribution, p  min,  max - minimum, maximum Lorentz factor of the electron distribution Comoving luminosity, L inj, erg/s Magnetic field, B, G External photon field Radius of the sphere, R, cm Escape time, t esc, in units of R/c

10 Table 1. Parameters of Jet Components for 0827+243 Comp. Counts X-ray position Radio position X-ray Size Radio Size Flux(0.2-6 keV) Radio Flux R" PA° R" PA° arcsec arcsec 10 -14 erg cm -2 s -1 mJy Core 6703±82 0.97 0.002 212.5 2095.8 C1 7±3 2.50 154.5 2.71 157.8 0.25 0.16 0.26 0.06 C2 30±5 3.80 148.0 - - 0.50 - 0.83 < 0.04 C3 25±5 4.57 151.2 - - 0.55 - 0.89 < 0.04 C4 34±6 5.50 155.0 - - 0.85 - 1.13 < 0.04 C5 18±4 6.02 175.0 6.16 175.9 1.0 - 0.57 0.95 C6 1±1 - - 8.08 -160.0 - 0.55 <0.01 3.88 Table 1. Parameters of Jet Components for 0827+243 Comp. Counts X-ray position Radio position X-ray Size Radio Size Flux(0.2-6 keV) Radio Flux R" PA° R" PA° arcsec arcsec 10 -14 erg cm -2 s -1 mJy Core 6703±82 0.97 0.002 212.5 2095.8 C1 7±3 2.50 154.5 2.71 157.8 0.25 0.16 0.26 0.06 C2 30±5 3.80 148.0 - - 0.50 - 0.83 < 0.04 C3 25±5 4.57 151.2 - - 0.55 - 0.89 < 0.04 C4 34±6 5.50 155.0 - - 0.85 - 1.13 < 0.04 C5 18±4 6.02 175.0 6.16 175.9 1.0 - 0.57 0.95 C6 1±1 - - 8.08 -160.0 - 0.55 <0.01 3.88 Spectral Energy Distribution of C5 z=1.06  =1.2  =1.2 p=2  min =10  max =10 7 L inj = 2  10 46 erg/sec B = 15  G R = 1.3  10 22 cm t esc =5, CMB U B = 9.0  10 -12 erg cm -3 U p = L inj /(4  R 2 u)= 1.6  10 -11 erg cm -3 u=c/t esc,  =h /(mc 2 ) t ltcross =R/u=1.4  10 6 yr

11 Magnetic Field Structure in C5

12 Conclusions 1.The bright radio feature detected at 10  from the core has counter- parts at X-ray and IR wavelengths. 2. The SED of the feature suggests that the observed emission is produced via the synchrotron mechanism and EC/CMB process by a single population of relativistic electrons with Lorentz factors up to 10 7 and energy index ~3. 3. The jet in this region is mildly relativistic with Doppler factor  ~ 1.2 and magnetic field B ~ 15  G. 4. The jet most likely decelerates on kiloparsec scales by a factor of ~3 in  with respect to the parsec-scale jet flow. 5. The injection of particles of such high energies in the region seems to occur at an oblique shock front formed by the interaction of the jet with a cloud that is ramming it at an angle. 6. The particles stay in the region  1.4  10 6 yr and cool efficiently. 7. The EC/CMB process should produce  -ray emission that possibly can be detected with the GLAST.


Download ppt "The Quasar 1317+520: A Laboratory for Particle Acceleration Svetlana Jorstad IAR, Boston U Alan Marscher IAR, Boston U Jonathan Gelbord U. Durham Herman."

Similar presentations


Ads by Google