Presentation is loading. Please wait.

Presentation is loading. Please wait.

Postgraduate course Human Genetics 09/12/11 Bert Callewaert, MD, PhD Center for Medical Genetics Ghent University Hospital Principles of Molecular Disease:

Similar presentations


Presentation on theme: "Postgraduate course Human Genetics 09/12/11 Bert Callewaert, MD, PhD Center for Medical Genetics Ghent University Hospital Principles of Molecular Disease:"— Presentation transcript:

1 Postgraduate course Human Genetics 09/12/11 Bert Callewaert, MD, PhD Center for Medical Genetics Ghent University Hospital Principles of Molecular Disease: Lessons from the Hemoglobinopathies

2 The effect of mutations on protein function mutations resulting in a loss of function of the protein mutations resulting in a gain of function of the protein mutations resulting in a novel property by the protein mutations resulting in gene expression at the wrong time or place Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital

3 Loss-of-function mutations deletion of the entire gene (and eventually also contiguous genes) examples: microdeletion syndromes, monosomies (Turner),  -thalassemias chromosomal rearrangements premature stop codon (nonsense or frameshift mutations) missense mutations may abolish protein function e.g. Catshl syndrome: loss- of – function FGFR3 Severity of disease ~ amount of function lost Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital FGFR3 p.R621H

4 Gain-of-function mutations mutations that enhance one normal function of the protein f.e.: the G380R mutation in FGFR3 causing achondroplasia mutations that increase the production of a normal protein in its normal environment f.e.: trisomy 21 (Down syndrome) note: Alzheimer duplication of PMP22 in Charcot-Marie-Tooth disease type 1A chromosomal duplications in cancer = mutations that enhance one or more of the normal functions of the protein Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital

5 Novel property mutations = (missense) mutations  novel property of the protein +/- normal function infrequent (most AA substitutions either neutral or detrimental) e.g. sickle cell disease Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital

6 Mutations associated with heterochronic or ectopic gene expression = mutations that alter the regulatory regions of a gene Examples: oncogene mutations in cancer hereditary persistence of HbF (continued expression of the  -globin gene) Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital

7

8

9 Hemoglobinopathies most common single-gene disorders in humans more than 5% of the world’s population is carrier of an abnormal globin gene Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital

10 Hemoglobin 4 subunits: 2  like) and 2  (like) - chains each subunit is composed of : - a polypeptide chain (globin) - a prosthetic group (heme): iron-containing pigment that combines with O 2 highly conserved structure Hb A (adult hemoglobin):     Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital

11 Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital

12 chromosome 16 chromosome 11 common ancestral gene identical differ only in 10/146 AA In adult life: >97% HbA 2% HbA 2 <1% HbF Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital

13 Globin switching Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital

14 LCR  GG  AA  6 kb expression of  -globin gene controlled by nearby promoter and LCR locus control region (LCR): required for the expression of all the genes in the  -globin cluster deletions of LCR results in  - thalassemia Chr. 11 Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital

15 Groups of mutations 1.Mutations that alter the structure of the globin protein 2.Reduced availability one or more globin chains 3.mutations that impair the globin developmental switching Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital

16 1. Structural Variants usually due to point mutations in one of the globin genes more than 400 abnormal hemoglobin variants have been described only about 50% are clinically significant three classes: - mutants that cause hemolytic anemia - mutants that alter oxygen transport - mutants that reduce the abundance of the globin chain (thalassemias) Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital

17 Structural Variants that cause Hemolytic Anemia - the mutant makes the Hb tetramer unstable  loss-of-function e.g.: Hb Hammersmith (  -chain Phe42Ser mutation) - the mutant gives the globin chain an unusual rigid structure novel property mutations f.e.: sickle cell globin; HbC Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital

18 Sickle Cell Disease HbS: first abnormal Hb detected (Glu6Val mutation in  -chain) severe AR condition common in equatorial Africa; 1/600 African Americans is born with the disease sickle cell trait refers to the heterozygous state about 8% of African Americans are heterozygous heterozygotes are protected against malaria Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital

19 Sickle Cell Disease

20 usually due to point mutations in one of the globin genes more than 400 abnormal hemoglobin variants have been described only about 50% are clinically significant three classes: - mutants that cause hemolytic anemia - mutants that alter oxygen transport - mutants that reduce the abundance of the globin chain (thalassemias) Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital 1. Structural Variants

21 Hemoglobin Structural Variants that alter oxygen transport Hb Hyde Park (β-chain His92Tyr) ~ normal hemoglobin stability iron resistant to the enzyme methemoglobin reductase.  accumulation of methemoglobin → cyanosis (usually asymptomatic) homozygous state presumably lethal. Hb Hammersmith (β chainPhe 42 Ser)  instable Hb, lower O2 affinity Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital mutations in α:β interface (Hb Kempsey) prevent oxigen related movement  locked in high O2 affinity state  Polycythemia

22 usually due to point mutations in one of the globin genes more than 400 abnormal hemoglobin variants have been described only about 50% are clinically significant three classes: - mutants that cause hemolytic anemia - mutants that alter oxygen transport - mutants that reduce the abundance of the globin chain (thalassemias) Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital 1. Structural Variants

23 2. Hemoglobin Synthesis Disorders (Thalassemias) collectively the most common human single-gene disorders! carriers: protective advantage against malaria >  (sea): first discovered in Mediterranean area imbalance in  chain ratio - ↓synthesis - instability ↑normal chains: damage the RBCs (hemolytic anemia) ↓Hb synthesis  hypochromic, microcytic anemia Dd Iron deficiency Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital

24 The  - Thalassemias affect the formation of both fetal and adult Hb in the absence of  globins: - Hb Bart’s:   - Hb H:   Homotetrameric Hb: ineffective oxygen carriers  Hydrops fetalis Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital α - globin production NormalanemiaHydrops foetalis

25 most commonly due to deletion of the  globin genes Misalignment with Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital The  - Thalassemias

26 clinical conditionnumber of functional  globin gene  chain   genes genotype production Normal4  Silent carrier3   thalassemia trait2  or 50% (mild anemia, microcytosis)   Hb H (   ) disease1  (moderately severe hemolytic anemia) Hydrops fetalis (Hb Bart’s   )0  0% * Carriers frequent in Southeast Asia Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital The  - Thalassemias

27 Rare forms: - form due to the ZF deletion (named after individual ZF) - the ATR-X syndrome Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital The  - Thalassemias

28 ZF deletion transcribed from the opposite strand    gene is silenced due to the generation of antisense RNAs from the truncated LUC7L gene wild-type antisense transcripts do also exist and play a role in regulation of gene expression (f.e. X inactivation)! Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital

29 The ATR-X syndrome MR and  thalassemia due to mutations in the X-linked ATRX gene encodes a chromatin remodeling protein activates expression in trans partial loss-of-function mutations result in modest reduction of  globin synthesis somatic (more severe) mutations in ATRX cause the  thalassemia myelodysplasia syndrome (if germline: hydrops fetalis!) Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital

30 Erythrocytes after incubation in briljant cresyl blue. Hb H inclusions :‘golf ball’ From Gibbons R. Orphanet Journal of Rare Diseases 2006;1:15 Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital The ATR-X syndrome Profound MR (X-L) MC Short stature Genital Δ (Mild) anemia

31 The  - Thalassemias ↓  globin production two  thalassemia alleles: usually thalassemia major (severe anemia) one  thalassemia allele: thalassemia minor (mild anemia, no clinic) postnatal precipitation of excess  chains  hemolysis low β-chain production  hypochromic, microcytic anemia ↑HbA 2 (     ) and ↑ HbF (     ) >> single-base pair substitutions (rather than deletions) >> compound heterozygous simple versus complex  thalassemia Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital

32 of the 3’ end of the gene >> Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital

33 Point mutations that cause  -thalassemia are distributed throughout the gene. They affect virtually every process required for the production of normal  -globin. Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital

34 Posttranscriptional modifications of mRNA Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital

35 RNA splicing mutations in  – Thalassemias (1) Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital

36 Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital RNA splicing mutations in  – Thalassemias (2)

37 Very frequent in Southeast Asia Hb E: example of a single nucleotide substitution that affects both RNA splicing and the coding sequence Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital RNA splicing mutations in  – Thalassemias (3)

38 (  thalassemia (  thalassemia ( A  thalassemia (illustrates importance of LCR) Hereditary persistence of fetal hemoglobin Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital Complex  – Thalassemias

39 3. Globin Developmental Switching Disorders hereditary persistence of fetal hemoglobin group of clinically benign conditions production of higher levels of Hb F than is seen in (  thalassemia they impair the perinatal switch from  -globin to  -globin synthesis Postgraduate course Human Genetics – 09/12/11 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital


Download ppt "Postgraduate course Human Genetics 09/12/11 Bert Callewaert, MD, PhD Center for Medical Genetics Ghent University Hospital Principles of Molecular Disease:"

Similar presentations


Ads by Google