Presentation is loading. Please wait.

Presentation is loading. Please wait.

Auditory Sensation (Hearing) L13

Similar presentations


Presentation on theme: "Auditory Sensation (Hearing) L13"— Presentation transcript:

1 Auditory Sensation (Hearing) L13
Faisal I. Mohammed, MD, PhD University of Jordan

2 Objectives Define decibel (intensity) and Hz (frequency)
Describe the ossicular system and explain its function Follow up sound transmission up to the cochlea Outline the structure of cochlea, and the organ of Corti Describe the mechanism of sound transduction Follow up the auditory pathway to the cerebral cortex Describe auditory abnormalities (types of deafness) University of Jordan

3 University of Jordan

4 Frequency of sound wave: Audible sound wave pure tones 20 – 20,000 Hz
Speed of sound is 335 m/sec in Air University of Jordan

5 University of Jordan

6 University of Jordan

7 Decibel: a measure of sound intensity
Decibel (dB) = 10 log I/IR I = intensity of sound, IR= reference intensity Acoustic intensity is proportional to the square of sound pressure level Sound pressure is more conveniently measured than sound intensity Sound pressure level (SPL) unit is decibel SPL (dB) = 20 log P/PR P= the sound pressure in N/m2 (N=Newton, m = meter) PR= reference pressure (either dynes/cm2, the absolute threshold for human hearing and equal 20 micropascal, or 1 dyne/ cm2 ) University of Jordan

8 The Tympanic Membrane and the Ossicular System
Tympanic membrane functions to transmit vibrations in the air to the cochlea Amplifies the signal because the area of the tympanic membrane is 17 times larger than the oval window (55 sq. mm Vs. 3.2 sq. mm) Tympanic membrane connected to the ossicles malleus incus Stapes Ossicular system works as a lever system and amplifies the sound 1.3 time Total amplification is 22 times (17x1.3) called Impedance Matching (match the resistance of sound wave movement in fluid vs. the resistance in air) University of Jordan

9 University of Jordan

10 Components of the Auditory System
University of Jordan

11 University of Jordan

12 University of Jordan

13 Attenuation of Sound by Muscle Contraction
Two muscles attach to the ossicles Stapedius (supplied by facial Nn VII) tensor tympani (supplied by Trigeminal Nn V) A loud noise initiates reflex contraction after milliseconds Attenuates vibration going to cochlea (Attenuation reflex) Serves to protect cochlea and damps low frequency sounds i.e., your own voice University of Jordan

14 Cochlea system of three coiled tubes separated by membranes into the scala tympani, scala media, scala vestibuli sound waves cause back and forth movement of the tympanic membrane which moves the stapes back and forth this causes displacement of fluid in the cochlea and induces vibration in the basilar membrane University of Jordan

15 Structure of the Human Cochlea
University of Jordan

16 University of Jordan

17 University of Jordan

18 BasilarMembrane contains about 30,000 fibers which project from the bony center of the cochlea, the modiolus fibers are stiff reed-like structures fixed to the modiolus and embedded in the loose basilar membrane because they are stiff and free at one end they can vibrate like a musical reed the length of the fibers increase and the diameter of the fibers decrease from base to the helicotrema, overall stiffness decreases 100 times, high frequency resonance occurs near base, low near apex University of Jordan

19 Structural Components of the Cochlea
University of Jordan

20 Organ of Corti receptor organ that generates nerve impulses
lies on the surface of the basilar membrane, contains rows of cells with stereocilia called hair cells the tectorial membrane lies above the stereocilia of the hair cells movement of the basilar membrane causes the stereocilia of the hair cells to shear back and forth against the tectorial membrane University of Jordan

21 University of Jordan

22 University of Jordan

23 The Organ of Corti University of Jordan

24 movement of the basilar membrane causes the stereocilia of the hair cells to shear back and forth against the tectorial membrane. University of Jordan

25 Scala vestibuli Cochlear duct (contains endolymph) tympani Perilymph
Basilar membrane Cochlea Sound waves Helicotrema Stapes vibrating in oval window Malleus Incus External auditory canal Tympanic Secondary tympanic membrane vibrating in round window Auditory tube Vestibular membrane Middle ear Tectorial membrane Spiral organ (organ of Corti) 1 2 3 4 5 6 Scala vestibuli Cochlear duct (contains endolymph) tympani Perilymph Basilar membrane Cochlea Sound waves Helicotrema Stapes vibrating in oval window Malleus Incus External auditory canal Tympanic Secondary tympanic membrane vibrating in round window Auditory tube Vestibular membrane Middle ear Tectorial membrane Spiral organ (organ of Corti) 1 2 3 4 5 6 7 Scala vestibuli Cochlear duct (contains endolymph) tympani Perilymph Basilar membrane Cochlea Sound waves Helicotrema Stapes vibrating in oval window Malleus Incus External auditory canal Tympanic Secondary tympanic membrane vibrating in round window Auditory tube Vestibular membrane Middle ear Tectorial membrane Spiral organ (organ of Corti) 1 2 3 4 5 6 7 8 Scala vestibuli Cochlear duct (contains endolymph) tympani Perilymph Basilar membrane Cochlea Sound waves Helicotrema Stapes vibrating in oval window Malleus Incus External auditory canal Tympanic Secondary tympanic membrane vibrating in round window Auditory tube Vestibular membrane Middle ear Tectorial membrane Spiral organ (organ of Corti) 1 2 3 4 5 6 7 8 9 Scala vestibuli Cochlear duct (contains endolymph) tympani Perilymph Basilar membrane Cochlea Sound waves Helicotrema Stapes vibrating in oval window Malleus Incus External auditory canal Tympanic Secondary tympanic membrane vibrating in round window Auditory tube Vestibular membrane Middle ear Tectorial membrane Spiral organ (organ of Corti) 1 2 3 4 5 Scala vestibuli Cochlear duct (contains endolymph) tympani Perilymph Basilar membrane Cochlea Sound waves Helicotrema Stapes vibrating in oval window Malleus Incus External auditory canal Tympanic Secondary tympanic membrane vibrating in round window Auditory tube Vestibular membrane Middle ear Tectorial membrane Spiral organ (organ of Corti) 1 2 3 4 Scala vestibuli Cochlear duct (contains endolymph) tympani Perilymph Basilar membrane Cochlea Sound waves Helicotrema Stapes vibrating in oval window Malleus Incus External auditory canal Tympanic Secondary tympanic membrane vibrating in round window Auditory tube Vestibular membrane Middle ear Tectorial membrane Spiral organ (organ of Corti) 1 Scala vestibuli Cochlear duct (contains endolymph) tympani Perilymph Basilar membrane Cochlea Sound waves Helicotrema Stapes vibrating in oval window Malleus Incus External auditory canal Tympanic Secondary tympanic membrane vibrating in round window Auditory tube Vestibular membrane Middle ear Tectorial membrane Spiral organ (organ of Corti) 1 2 Scala vestibuli Cochlear duct (contains endolymph) tympani Perilymph Basilar membrane Cochlea Sound waves Helicotrema Stapes vibrating in oval window Malleus Incus External auditory canal Tympanic Secondary tympanic membrane vibrating in round window Auditory tube Vestibular membrane Middle ear Tectorial membrane Spiral organ (organ of Corti) 1 2 3 University of Jordan

26 Nerve Impulse Origination
The stereocilia, when bent in one direction cause the hair cells to depolarize, and when bent in the opposite direction hyperpolarize. this is what begins the neural transduction of the auditory signal Auditory signals are transmitted by the inner hair cells. 3-4 times as many outer hair cells than inner hair cells outer hair cells may control the sensitivity of the inner hair cells for different sound pitches University of Jordan

27 University of Jordan

28 University of Jordan

29 Determination of Sound Frequency and Amplitude (sound intensity)
Place principle determines the frequency of sound perceived. Different frequencies of sound will cause the basilar membrane to oscillate at different positions (basilar membrane is tonotopically organized) Position along the basilar membrane where hair cells are being stimulated determines the pitch of the sound being perceived. Phase-locked (volley) principle at lower frequencies of sound where firing rate determines the phase of sound wave (i.e frequency of sound wave) Amplitude is determined by how much the basilar membrane is displaced ( by frequency of impulses from the nerve fiber and the No. of nerve fibers stimulated) University of Jordan

30 The “Place Principle” University of Jordan

31 University of Jordan

32 Threshold of hair cells
University of Jordan

33 Decibel Unit of Sound unit of sound
expressed in terms of the logarithm of their intensity a 10 fold increase in energy is 1 bel 0.1 bel is a decibel 1 decibel is an increase in sound energy of 1.26 times University of Jordan

34 Central Auditory Pathway
University of Jordan

35 some fibers pass to the ipsilateral superior olivary nucleus.
2nd order neurons project through trapezoid body to the contralateral superior olivary nucleus. some fibers pass to the ipsilateral superior olivary nucleus. from superior olivary nucleus to inferior colliculus via the lateral lemniscus from medial geniculate to auditory cortex from inferior colliculus to medial geniculate fibers enter dorsal and ventral cochlear nuclei of the upper part of the medulla. University of Jordan

36 Auditory Cortex and Association Areas
- arranged by tonotopic maps - high frequency sounds at one end of map - low frequency sounds at other end - discrimination of sound patterns University of Jordan

37 Determining the Direction of Sound
superior olivary nucleus divided into lateral and medial nuclei lateral nuclei detects direction by the difference in sound intensities between the two ears medial nuclei detects direction by the time lag between acoustic signals entering the ears University of Jordan

38 Deafness nerve deafness
impairment of the cochlea or the auditory nerve conduction deafness impairment of tympanic membrane or ossicles University of Jordan

39 Audiometery University of Jordan

40 Weber test Rinne test University of Jordan

41 The Internal Ear (Site of Equilibrium Receptors)
University of Jordan

42 Thank You University of Jordan


Download ppt "Auditory Sensation (Hearing) L13"

Similar presentations


Ads by Google